Nunca estamos realmente sozinhos

Em levantamentos sobre a biodiversidade, muitas regiões geográficas acabam sem uma boa amostragem das espécies que nelas vivem. As remotas ou com um número muito grande de espécies entram nessa lista. Outro local com uma diversidade ainda pouco descrita é, surpreendentemente, a nossa própria casa. Pesquisas recentes se concentraram na caracterização de comunidades bacterianas em ambientes fechados. Dentro de uma casa, cozinhas e banheiros geralmente têm comunidades microbianas distintas uns dos outros. Além disso, a composição de microorganismos em uma determinada casa (ou num cômodo específico dentro da casa) pode ser influenciada por quem a utiliza, e pela presença de animais de estimação. Esses ambientes criados por nós oferecem novos habitats não só para microorganismos como bactérias, archaea e fungos, mas também para artrópodes. Cientistas da Universidade Estadual da Carolina do Norte (NC State), em Raleigh, nos Estados Unidos, observando suas próprias casas, perceberam que os lares poderiam abrigar uma ampla diversidade de vida além dos habitantes humanos, plantas e animais de estimação. Eles então investigaram 50 casas na cidade de Raleigh em busca desses moradores e encontraram mais de mil espécies nas residências, incluindo inúmeras espécies de aranhas, formigas, besouros, ácaros, moscas e mosquitos (Figura 1). Dentre os artrópodes mais comuns estavam: besouros, aranhas, sciarídeos, formigas e cecidomiídeos (Figura 2). Em uma única residência, foram encontradas mais de duzentas espécies! Continue Lendo “Nunca estamos realmente sozinhos”

Os modelos na jornada conhecimento

O mundo real é extraordinariamente complexo. Cientistas trabalham com simplificações dessa realidade, que nos ajudam a entendê-lo. Essas simplificações são os modelos.

Como cientistas interessados em biologia, tentamos gerar conhecimento sobre o mundo que nos rodeia. Essa tarefa não é trivial: nosso objeto de estudo é incrivelmente complexo, envolvendo interações entre moléculas que residem em células, entre células que compõem tecidos, entre indivíduos que são formados de tecidos, entre populações que são formadas por indivíduos. Cada nível dessa hierarquia envolve uma multidão de agentes interagindo uns com os outros. A transformação evolutiva envolve interações em todos esses níveis. Continue Lendo “Os modelos na jornada conhecimento”

Observando a Evolução em tempo real

Quantas gerações você é capaz de voltar atrás e saber quem eram seus parentes mais antigos? Será que consegue resgatar o nome da tataravó da sua tataravó? A rainha Elizabeth da Inglaterra tem o registro de 32 gerações. O filósofo chinês Confúcio tem o maior registro genealógico humano conhecido, 80 gerações. E se fossemos capazes de voltar mais de 70 mil gerações? Que perguntas poderíamos responder? Continue Lendo “Observando a Evolução em tempo real”

Mamíferos sem corpus callosum e a evolução das conexões entre os dois lados do cérebro

Os dois lados do cérebro são anatomicamente idênticos, mas não são independentes. Neurônios projetam seus axônios de um lado ao outro, integrando a atividade neuronal que ocorre em cada lado. O cruzamento ocorre em regiões específicas da linha media do cérebro chamadas de comissuras. Em humanos, a principal comissura é chamada corpus callosum e conecta os hemisférios do neocórtex, a grande região anterior do cérebro de mamíferos.

O neocórtex é formado por capas de neurônios interconectados cuja atividade é responsável por comportamentos complexos. Ele está espacialmente organizado segundo a parte do corpo da qual ele recebe atividade sensorial. Por exemplo, o neocórtex motor tem uma área que recebe a informação da mão esquerda. Ao lado desta área, está a área que recebe informação do braço esquerdo, e assim por diante.

ab

Os neurônios que cruzam o corpus callosum conectam áreas similares nos lados direito e esquerdo do neocórtex. Voltando ao exemplo da mão, a área do neocórtex que controla a mão esquerda está conectada à que controla a mão direita (conexão homotípica) e o braço direito (conexão heterotípica), permitindo a coordenação da atividade das duas mãos. Pessoas que nascem sem corpus callosum, entre outros problemas, apresentam dificuldades para coordenar atividades motoras e visuais dos dois lados do corpo. Porém, os problemas de integração dos hemisférios são bem mais pronunciados em pessoas que nascem com corpus callosum e o perdem por uma lesão.

Todos os mamíferos têm neocórtex, mas nem todos têm corpus callosum: os marsupiais (mamíferos que terminam o desenvolvimento embrionário fora do útero, como os cangurus) e monotremas (mamíferos que nascem de um ovo, como o ornitorrinco), não têm corpus callosum. Como eles integram então a atividades dos dois lados do cérebro?

Investigando o cérebro de ornitorrincos e marsupiais, cientistas da Universidade Queensland, na Austrália, identificaram conexões entre o neocórtex dos dois hemisférios cerebrais que precedem a evolução do corpus callosum.

Para poder estudar um animal raro como o ornitorrinco, eles realizaram ressonâncias magnéticas em dois indivíduos depositados em uma coleção zoológica (sim, os museus servem para investigação!) e reconstruíram digitalmente as projeções neuronais no neocórtex (vejam nos vídeos abaixo). Repetiram o mesmo experimento em um pequeno marsupial australiano chamado Dunnart (Sminthopsis crassicaudata). O trabalho mostra que neurônios que cruzam de um lado ao outro pela região ventral do cérebro (chamada de comissura anterior, presente em todos os mamíferos) conectam os neocórtex dos dois hemisférios em marsupiais e monotremas.

Para confirmar seus achados, eles injetaram o cérebro de Dunnarts com traçadores neuronais, sustâncias fluorescentes que se incorporam dentro dos neurónios e permitem visualizar seus axônios, ajudando a determinar as conexões que estes possuem dentro do cérebro. Estas experiências mostraram que os neocórtex dos Dunnarts estabelecem, através da comissura anterior, conexões homo- e heterotípicas equivalentes às conexões formadas pelos axônios que passam pelo corpus callosum.

O resultado sugere que conexões entre os dois hemisférios do neocórtex formadas através da comissura anterior estavam presentes no ancestral comum de todos os mamíferos e a evolução do corpus callosum nos mamíferos placentários representa um novo caminho, mas não uma novidade em termos de conectividade do cérebro.

Curiosamente, algumas pessoas que nascem sem corpus callosum possuem boa integração dos hemisférios, pois apresentam conexões compensatórias pela comissura anterior. Como os marsupiais e monotremas, elas têm os mesmos circuitos, organizados de modos diferentes.

 

Vídeo 1: Segregação das projeções através da comissura anterior de ornitorrinco.

Vídeo 2: Topografia homotípica das projeções através da comissura anterior em ornitorrinco.

Vídeo 3: Segregação das projeções através da comissura anterior de Dunnarts.

João Francisco Botelho e Macarena Faunes

(Yale University)

Para saber mais:

Suárez R, Paolino A, Fenlon LR, Morcom LR, Kozulin P, Kurniawan ND, et al. A pan-mammalian map of interhemispheric brain connections predates the evolution of the corpus callosum. Proc Natl Acad Sci U S A. 2018.

Suárez R, Gobius I, Richards LJ. Evolution and development of interhemispheric connections in the vertebrate forebrain. Frontiers in Human Neuroscience. 2014;8(497).

 

 

Denny: a menina meio Neandertal, meio Denisovana

A possibilidade de estudar genomas arcaicos tem reescrito a história de nossa espécie e a cada artigo publicado temos revelações surpreendentes.

A evolução humana foi por muito tempo erroneamente vista como um processo linear ligando um ancestral simiesco mais primitivo ao ser humano moderno. No entanto, à medida que resquícios fósseis foram sendo encontrados, percebeu-se que na verdade o ser humano era apenas o final de um ramo de uma árvore extremamente diversa. Continue Lendo “Denny: a menina meio Neandertal, meio Denisovana”

Agressividade, docilidade e domesticação: O que o genoma das raposas-vermelhas tem a nos dizer?

Cientistas sequenciam o genoma da raposa-vermelha (Vulpes vulpes) e de linhagens de raposas dóceis e agressivas em busca de regiões do genoma relacionadas a esses comportamentos.

No final da década de 1950, um geneticista russo iniciou um experimento fascinante: buscando entender as bases genéticas da domesticação e o papel do cruzamento seletivo nesse processo, Dmitry Konstantinovich Belyaev produziu inúmeras gerações de raposas em seu laboratório, no Instituto de Citologia e Genética em Novosibirsk, na Antiga União Soviética. Partindo de raposas-vermelhas selvagens (Vulpes vulpes), D. K. Belyaev e outros pesquisadores selecionaram por meio de cruzamento seletivo três populações distintas de raposas. Raposas que apresentavam comportamento dócil em relação aos seres humanos cruzaram entre si, gerando, ao longo de muitas gerações, uma população de raposas dóceis. Raposas agressivas em relação aos humanos cruzaram entre si, gerando uma linhagem de raposas agressivas, enquanto um terceiro grupo cruzou ao acaso, não sendo submetido a cruzamento seletivo. Esse famoso experimento de domesticação de raposas vermelhas está em operação até os dias de hoje, resultando no cruzamento seletivo de mais de 50 gerações de raposas de comportamento dócil, e mais de 40 gerações de raposas de comportamento agressivo (Figura 1). Continue Lendo “Agressividade, docilidade e domesticação: O que o genoma das raposas-vermelhas tem a nos dizer?”

Quando a evolução e a medicina se encontram

Populações africanas são as mais geneticamente variáveis do mundo. Infelizmente, essa alta variabilidade pode representar um problema para os indivíduos com ancestralidade africana, na hora em que eles precisarem encontrar um doador de medula óssea.

Todas as populações humanas são variáveis, pois os indivíduos diferem uns dos outros em seus genomas. Porém, a quantidade de variação genética não é a mesma em todas populações. Há algum tempo já se sabe que populações africanas são aquelas que possuem a maior variabilidade. Isso significa que os indivíduos africanos são, em média, mais diferentes uns dos outros do que aqueles de outras regiões. Consequentemente na África cada gene ocorre em mais “versões” (ou alelos) diferentes. Neste post vou apresentar uma ideia originalmente publicada por Noah Rosenberg e Jonathan Kang num artigo que mostrava que as diferenças nos níveis de diversidade genética têm implicações para além das questões acadêmicas, influenciando assuntos de relevância social.

Primeiro, cabe perguntar: o que determina a diversidade genética de populações humanas? Hoje em dia temos uma boa hipótese para explicar a distribuição mundial da variabilidade.  Com base em achados fósseis, estudos arqueológicos e análises genéticas, temos evidências de que nossa espécie se originou na África, e de lá se dispersou para o restante do globo. O êxodo da África teve como primeira parada o oriente médio, com subsequentes ocupações da Europa e da Ásia. A partir de lá, populações ocuparam regiões do Sudeste Pacífico, o Nordeste Asiático e finalmente a América.

Esses deslocamentos deixaram uma marca na variação genética de populações, pois quando populações saem de uma localidade e ocupam um novo território, apenas um subconjunto dos indivíduos se desloca para o novo local. Assim, parte da diversidade genética é perdida quando um novo território é ocupado. Isso explica porque a diversidade é maior na África, e torna-se progressivamente menor em populações mais distantes, que ocupam lugares longe da África, e cuja ocupação dependeu de sucessivas rodadas de deslocamentos populacionais. As populações menos variáveis do mundo estão na América, pois são aquelas que se originaram pela maior sucessão de migrações desde a África (Figura 1).

1fig2.jpg
Figura 1. Os círculos grandes representam populações e os pequenos círculos coloridos representam variantes genéticas. As setas indicam a direção de eventos de migração. Repare que à medida que populações se dispersam, ocupando novos territórios, parte da variação genética existente é perdida. Assim, populações que ocupam regiões mais remotas apresentam menos diversidade genética (veja a América, por exemplo).Figura de Rosenberg e Kang (2015).
Da diversidade à compatibilidade

Esse achado genético tem implicações para questões biomédicas. Para certas doenças humanas, incluindo vários tipos de câncer, o transplante de  medula óssea é uma solução. A medula óssea contém células que são capazes de produzir novas células sanguíneas. As células com esse potencial são chamadas de “células-tronco hematopoiéticas”. O transplante de medula consiste em transferir as células de um indivíduo saudável para um que possui alguma doença ou limitação na produção de células sanguíneas. Para que o transplante tenha sucesso, é necessário que as células de hospedeiro e do doador sejam semelhantes do ponto de vista imunológico (ou “compatíveis”), o que evita que o tecido transplantado seja rejeitado.

A compatibilidade imunológica é particularmente importante para um conjunto de proteínas envolvidas na resposta imune, chamadas de proteínas HLA. Havendo diferenças entre paciente e doador para os genes que codificam proteínas HLA, há imensas chances de o tecido transplantado ser rejeitado, ou de haver sérias complicações após o procedimento. Por causa disso, no processo de triagem de possíveis doadores, quatro genes HLA são cuidadosamente investigados, e o transplante ideal é aquele entre indivíduos idênticos para esses genes.

Não é fácil encontrar um doador e um receptor idênticos. São 4 genes que precisam ser iguais entre eles, e para cada gene todo nós carregamos dois alelos, um que herdamos de nossas mães e outro de nossos pais. Assim, deve haver uma correspondência perfeita entre genótipos formados por 10 alelos. Como há literalmente milhares de alelos para cada um dos genes HLA, a chance de se encontrar um doador idêntico em todos os genes ao paciente torna-se muito baixa. É por essa razão que a primeira opção para buscar doadores são os familiares do paciente: como eles compartilham ancestrais em comum, aumenta a chance de haver compartilhamento de alelos. Mas, caso não exista um doador apropriado entre os familiares, torna-se necessário procurar um doador não aparentado. É aí que entram os Registros de Doadores de Medula Óssea: grandes bases de dados com informações sobre o HLA de até milhões de doadores.

No Brasil o REDOME (Registro de Doadores de Medula Óssea) possui mais de 4 milhões de doadores registrados. Já no Estados Unidos o NMPD (National Marrow Donor Program) mantém o registro chamado “be the match”, com 16 milhões de doadores registrados. É nesses bancos que um paciente busca doadores com a combinação de genes HLA idêntica à sua. Quando há um doador compatível, ele é contactado para que as células hematopoiéticas sejam extraídas e o transplante realizado.

E é aqui que as questões de diversidade genética e de transplantes se encontram. Uma suspeita originalmente levantada por pesquisadores com base em modelagem de dados era a de que indivíduos de populações com muita diversidade genética teriam mais dificuldade em encontrar doadores. A lógica é relativamente simples: se na África há mais diversidade genética, cada indivíduo com ancestralidade africana poderá ter um de muitos tipos de genótipo HLA, dificultando que se encontre um doador idêntico a ele. Já em populações europeias há menos variação, e consequentemente há mais indivíduos geneticamente semelhantes. Isso aumenta a chance de se encontrar um doador apropriado. Assim, a maior diversidade genética em genes HLA de africanos pode potencialmente dificultar as chances de eles encontrarem doadores. A análise de dados do registro de doadores norte- americano, ilustrada na Figura 2, deixa clara essa dificuldade. Indivíduos norte-americanos que se identificam como “afro-americanos” tem têm uma chance de apenas 66% de encontrar um doador compatível em 7 entre 8 alelos HLA. Já um europeu tem 97% de encontrar alguém com esse nível de compatibilidade.

image1
Figura 2. As chances de encontrar um doador diferem dependendo da ancestralidade. Em verde está indicada a chance de um indivíduo encontrar um doador compatível (com 7 dos 8 alelos idênticos), em azul a chance dele não encontrar um doador. Os dados são para o registro de doadores dos Estados Unidos. A chance de encontrar doadores compatíveis é muito mais baixa entre africanos (http://blackbonemarrow.com/why-race-matters/).

E não é só a maior diversidade genética entre africanos que dificulta suas chances de realizar um transplante. Entre afro-descendentes nos Estados Unidos, a chance de localizar o potencial doador compatível é reduzida em relação àquela para europeus, assim como a chance de o possível doador estar em boa saúde, viabilizando o transplante. Esses fatores, não surpreendentemente, parecem resultar de diferenças na renda entre indivíduos de ancestralidade europeia e africana.

Diante desse quadro, o que fazer? Nos estados Unidos, grupos já se organizaram para divulgar entre afro-americanos a necessidade de aumentar o recrutamento para o registro de doadores, de modo dirigido a essa parcela da população. E no Brasil, onde estamos? No momento ainda estamos diagnosticando a magnitude do problema, realizando os primeiros estudos para avaliar se há diferença entre brasileiros com maior e menor ancestralidade africana na hora de encontrar um doador compatível. Esse é um trabalho que está sendo desenvolvido na USP, liderado pela pós-doutoranda Kelly Nunes.

Esse exemplo ilustra a interação entre aspectos aparentemente muito distintos de uma população: a sua diversidade genética, fatores sociais que influenciam o recrutamento, saúde e disponibilidade de doadores, e o consequente impacto desses fatores sobre a chance de um transplante ser realizado com sucesso. O conhecimento a respeito de um processo evolutivo, que resulta na perda de variantes genéticas à medida que populações migram, tem relevância direta para o planejamento de uma área de saúde pública. A diversidade genética das populações carrega uma marca de sua história evolutiva mas também influencia características socialmente relevantes, às quais precisamos ficar atentos.

Diogo Meyer (USP)

Para saber mais:

Noah A. Rosenberg and Jonathan T. L. Kang . 2015. Genetic Diversity and Societally Important Disparities GENETICS September 1, 2015 vol. 201 no. 1 1-12

Bergstrom T.C., Garratt R. J., Sheehan-Connor D., 2012 Stem cell donor matching for patients of mixed race. B.E.J. Econ. Anal. Policy 12: 30.

Prugnolle F., Manica A., Balloux F., 2005 Geography predicts neutral genetic diversity of human populations. Curr. Biol. 15: R159–R160.