Os cientistas por trás das páginas impressas

Para aprender como a ciência é feita, é fundamental aprender a questionar o que é lido nos livros, dirigir perguntas aos seus autores, e engajar em diálogos com os cientistas que publicam artigos.

Um dos livros que usei no meu segundo ano de graduação, quando já me arrisquei numa disciplina optativa avançada de Biologia Molecular, foi o clássico Molecular Biology of the Gene, que tem James Watson como um dos autores. Esse livro servia de espinha dorsal para uma disciplina oferecida pelo professor Carlos Menck. Atualizado, bem ilustrado e escrito por uma equipe que representava a nata da biologia molecular, era a fonte mais completa para o assunto. Ao longo das aulas cobríamos o seu conteúdo, discutindo passo-a-passo os experimentos seminais da biologia molecular, os mecanismos biológicos sob ótica molecular, e os desafios que o futuro poderia trazer.

Entretanto, o processo de ler e discutir o livro ofereceu um aprendizado que ia muito além de suas páginas, e que eu não antecipava quando comecei o curso. Em várias ocasiões, ao ler um trecho ou examinar uma figura, a discussão liderada pelo Menck colocava em xeque algo que o livro afirmava. Ora era a interpretação de um experimento, em outras ocasiões surgia um certo ceticismo sobre a descrição de uma imagem, em outras era uma ressalva à ênfase seletiva em alguns achados, em detrimento de outros. Ali, pela  primeira vez na minha vida de estudante, eu tomava contato com o fato de que o que estava escrito num livro texto (e, nesse caso, de autoria de um prêmio Nobel!) podia ser desafiado, discutido, questionado. Aprendia que no estudo das ciências, mesmo diante dos livros mais respeitados, não precisávamos aceitar como autoridade inquestionável o que nos era apresentado. Isso, para mim, foi um divisor de águas. Como aluno, eu teria que ter algum grau de protagonismo no processo de aprendizado, deveria me posicionar criticamente sobre aquilo que lia.

Questionando o autor

Alguns anos mais tarde, já durante meu doutorado na Universidade da Califórnia, em Berkeley nos Estados Unidos, tive uma nova experiência marcante. Junto com alguns colegas havia lido um livro provocativo, de autoria do matemático e biólogo teórico Brian Goodwin (1931-2009). Tratava-se de How the Leopard Changed its Spots, no qual Goodwin argumentava que a ênfase excessiva nos processos de seleção natural deixava de contemplar a importância das leis da física no processo evolutivo. Para Goodwin, as leis que regem a interação entre moléculas e explicam como elas se difundem no espaço são essenciais para entender o processo de transformação dos seres vivos. Para ele, os organismos possuem suas formas atuais em função daquilo que as leis da física permitem, e não como consequência da ação da seleção natural. Na época achei essas ideias interessantes, mas me pareceu que relegar a seleção natural a um segundo plano, e tentar explicar o processo de adaptação com referência apenas a leis físicas era difícil de aceitar. Me parecia que uma ideia importante (a de que leis físicas têm um espaço importante a ocupar em teorias evolutivas) estava sendo levada longe demais.

Por uma feliz coincidência Goodwin visitou Berkeley nessa época, e os alunos marcaram uma reunião informal com ele, durante a qual poderíamos conversar sobre os seus trabalhos e ideias científicas em geral. Fui para a conversa munido de minhas críticas à forma como ele havia escanteado –- a meu ver, desnecessariamente— a seleção natural através de sua visão de transformação evolutiva regida por leis físicas. Para minha surpresa, encontrei um cientista muito mais afável e maleável do que a leitura do seu livro indicava. Se nas páginas escritas ele era enfático quanto à importância de desafiar a seleção natural, na conversa ele mostrou uma face conciliadora. Diante de minhas perguntas, ele sorriu amigavelmente e explicou que na hora de escrever o livro era importante “carregar um pouco nas tintas” para dar mais ênfase à sua mensagem, mas que ele certamente achava promissora uma teoria com espaço tanto para as leis da física, quanto para o processo de seleção natural. Ali, experimentei um novo divisor de águas. Vi que as ideias de um cientista se misturavam ao estilo que ele usava para persuadir seus leitores. Vi um exemplo de que o que está na página impressa é apenas uma face das ideias que um cientistas desenvolve, e uma face com vieses e — nesse caso pelo menos— alguma dose de exagero. Novamente, concluí que o protagonismo cabia ao leitor. O livro não “falava por si”, tinha que ter seu conteúdo filtrado, avaliado criticamente.

Alunos conversam com cientistas

Encerro meus relatos compartilhando uma experiência recente, realizada este ano na disciplina optativa que ministro na USP, chamada Genética Evolutiva. O curso teve como foco a modelagem de processos evolutivos, e nele discutimos as forças que moldam a variabilidade genética em populações. Entre os temas está como características como taxas de reprodução e tamanho dos gametas influenciam a diversidade genética (algo previamente abordado neste blog). Esse assunto foi abordado usando um artigo de autoria de Jonathan Romiguier, atualmente na Universidade de Lausanne. Também abordamos um outro processo que modula a diversidade genética, que é a seleção natural. Esse tema foi abordado usando um artigo de Tim Sackton, atualmente na Universidade de Harvard, que mostra que quando a seleção favorece uma mutação numa região do genoma, ocorre uma homogeneização na população não só no sítio selecionado, mas também em regiões vizinhas do genoma (num processo chamado carona genética, previamente discutido neste blog).

Os temas são desafiadores, e representam questões ainda em aberto, foco de muitos debates. Os artigos também trazem desafios, com tratamentos matemáticos sofisticados. Frente a isso propus embarcamos numa atividade pedagógica diferente. A minha ideia era dar aos alunos uma oportunidade para se dirigirem diretamente aos autores dos artigos que tínhamos lido, apresentando perguntas e ideias. Após entrar em contato com os dois autores (Tim Sackton e Jonathan Romiguier), acertei com eles uma data para que os alunos enviassem perguntas sobre os artigos. Os dois autores se comprometeram a enviar respostas às questões por escrito, num prazo compatível com a duração do curso.

Para a maioria dos alunos, era a primeira disciplina que os colocavam em contato com a  literatura primária. Além disso, os artigos haviam gerado uma grande quantidade de perguntas, tanto referente à compreensão do que era apresentado, como em relação às implicações dos achados relatados. Assim, a oportunidade de interagir diretamente com os autores era promissora.

O trabalho envolveu algumas etapas. Primeiro, os alunos se reuniram em grupos e propuseram duas perguntas para cada artigo. A seguir, eu me reuni com os grupos e discuti as perguntas, revisando a redação (em inglês), a precisão conceitual e a relevância. Desse processo chegamos a oito perguntas para cada autor, que foram enviadas. Três semanas depois, recebemos as respostas. Uma aula inteira foi dedicada à discussão de cada uma delas, com os grupos que haviam formulado a pergunta sendo responsáveis por comentar a respostas recebidas. Finalmente, na avaliação da disciplina, propus uma investigação da literatura baseada em alguma ideia que tinha sido levantada pela troca com os autores.

E o que aprendemos nesse processo

Primeiro, vimos que o processo de elaborar uma pergunta precisa sobre um trabalho científico é algo imensamente desafiador. Requer domínio do trabalho em questão, do contexto teórico em que ele se insere, e da detecção de um tema que ficou “em aberto”. Propor uma pergunta que será lida pelo autor é muito mais difícil do que simplesmente discutir o texto ou levantar críticas sem o desafio de compartilhá-las. Criticar textos que lemos é desejável, mas não é fácil.

Em segundo lugar, o trabalho científico pôde ganhar uma nova vida. No caso do Tim Sackton, por exemplo, ele nos contou como nasceu a ideia original do trabalho (motivado por um outro estudo, que havia mostrado que a variação genética é surpreendente homogênea entre os mais variados seres vivos). Enxergamos um pouco mais sobre o que levou aqueles pesquisadores a se lançarem naqueles projetos, na medida em que eles explicitaram, nas respostas às perguntas, as questões que os moviam.

Em terceiro lugar, a troca permitiu lançar um olhar sobre como a ciência é feita. Jonathan Romiguier, frente a questões sobre a relação entre taxas de especiação e diversidade genética, admitiu que essa é uma “hipótese comum, mas que eu pessoalmente não vejo apoiada…” para então elencar as razões. Ele diagnosticava uma visão predominante, abria espaço para sua opinião pessoal, para então explorá-la. Diante dos olhos dos alunos um debate atual ganhou vida, não filtrado por um livro texto, mas expresso nas palavras de um pesquisador que manifesta seu ceticismo sobre uma ideia estabelecida e indica caminhos futuros. É assim que a ciência é feita, mas nem sempre isso transparece nos livros ou artigos.

Em quarto lugar, os alunos puderam perceber que estão mais próximos de fazer contribuições científicas do que poderiam imaginar. Por exemplo, para algumas questões os autores iniciam suas respostas dizendo que “há de fato outros grupos trabalhando nessa questão”, e outras eles admitem “ser uma questão interessante”, para então ponderar os desafios necessários para levá-las adiante. Ficava claro que os alunos haviam assumido um protaganismo científico, identificando questões em aberto e propondo estratégias para abordá-las.  O comentário de um especialista servia para mostrar que os alunos já estavam numa posição de participar do diálogo de um modo informado, e não se restringir à posição de leitor do conteúdo gerado, sem ter nada a oferecer em troca.

Esses três relatos captam diferentes momentos da minha vida: como aluno de graduação, doutorando e professor. Todos têm um elemento central em comum: o aprendizado de que em ciência –assim como em outros aspectos de nossas vidas– a construção do conhecimento é uma atividade humana, falível e sujeita a idas e vindas, debates e críticas. Compreender isso nos coloca um pouco mais próximos de sermos agentes do processo que gera conhecimento.

Diogo Meyer (USP)

Para saber mais:

Os artigos que os alunos leram e discutiram com os autores foram:

R.B. Corbett-Detig, D.L. Hartl, T.B. Sackton, Natural Selection Constrains Neutral Diversity across A Wide Range of Species, PLoS Biol. 13 (2015) 1–25.

J. Romiguier, P. Gayral, M. Ballenghien, a. Bernard, V. Cahais, a. Chenuil, Y. Chiari, R. Dernat, L. Duret, N. Faivre, E. Loire, J.M. Lourenco, B. Nabholz, C. Roux, G. Tsagkogeorga, a. a.-T. Weber, L. a. Weinert, K. Belkhir, N. Bierne, S. Glémin, N. Galtier, Comparative population genomics in animals uncovers the determinants of genetic diversity, Nature. 515 (2014) 261–263

Imagem de abertura: Gabriel Sainz

As aves sem árvores: sobrevivendo à extinção no chão

 

Joões-de-barro, sabiás e rolinhas ocupam os jardins e praças de grande parte do Brasil. Originalmente, estas aves viviam em campos, capoeiras e bordas de florestas.  Nas cidades, encontraram um ambiente que outras espécies, mais dependentes de áreas densamente florestadas, não toleram. Elas pertencem a um pequeno grupo de espécies que se tornou mais abundante nos ambientes alterados. Na grande catástrofe ecológica causada pelos humanos, já chamada por cientistas de sexta grande extinção em massa, elas estão prosperando. Seus hábitos, por uma contingência histórica, podem ser um passaporte para atravessar a catástrofe.

Uma contingência similar pode ter influenciado o futuro da evolução das aves há 66 milhões de anos. A quinta grande extinção em massa, famosa pela desaparição dos dinossauros, foi seguida pela radiação evolutiva das aves modernas, quando as poucas espécies sobreviventes deram origem a toda a diversidade que hoje colore nosso planeta.

Por que algumas aves resistiram enquanto tantas outras espécies pereceram? Seria por causa de seus hábitos alimentares? De sua distribuição geográfica? Seu tamanho? Embora frequentemente associemos aves e árvores, um novo estudo propõe que uma das chaves para superar a grande catástrofe foi ter hábitos terrestres e não depender das árvores. Daniel Field e seus colegas nos EUA usaram três linhas de argumentos.

Primeiro, eles mapearam os hábitos de vida das aves moderna em uma filogenia construída com dados moleculares e determinaram qual era o hábito de vida mais provável dos ancestrais de cada linhagem. O resultado aponta, inequivocamente, que eles não habitavam nem nidificavam em árvores (Figura 1)

figura1.jpg
Figura 1: Filogenia das aves modernas mostrando em verde linhagens predominantemente arborícolas e em marrom linhagens predominantemente não arborícolas. Todas as linhagens arborícolas têm ancestrais terrestres (Figura modificada de Fields et al, 2018).

Mostraram também que o registro fóssil de algumas linhagens arborícolas modernas sugere que elas tinham ancestrais mais terrestres. Por exemplo, fósseis relacionados aos turacos (Figura 2), uma família de aves arborícolas endêmica do continente africano, tinha patas longas, indicando que eles viviam no solo.

34899743383_f2943af667_k.jpg
Figura 2: Knysna Turaco (Tauraco corythaix), Western Cape, South Africa. Photo de Daniel Fields

Por último, mostraram que logo após a catástrofe, pólens de árvores deram lugar a esporos de pteridófitos, como as samambaias, exatamente o que ocorre durante um processo de sucessão ecológica em que as árvores são eliminadas. A reaparição de pólen no registro fóssil levou aproximadamente mil anos.

Os autores usam estas evidências para argumentar que a desflorestação causada pelo impacto de um meteoro selecionou negativamente as aves que dependiam das árvores. O impacto teria causado incêndios, chuvas ácidas e levantado sedimentos que bloquearam a luz do sol necessária para fotossíntese. As florestas desapareceram e com elas as espécies que dependiam destes ecossistemas. Por exemplo, uma linhagem de aves arborícolas abundante antes da extinção em massa, conhecida como Enantiornithes, sumiu do registro fóssil (Figura 3).

figura4.png
Figura 3: As aves modernas descendem de ancestrais terrestres que sobreviveram à extinção em massa no fim do Cretáceo (Figura modificada de Fields et al, 2018).

As aves modernas tiveram que reconquistar as árvores. Uma vez que as florestas se recuperaram, hábitos arborícolas evoluíram rapidamente em diferentes linhagens. Os ancestrais dos passarinhos, anus, beija-flores e pombos saíram do chão e sofreram evolução independente que os levou a ocupar os ramos e troncos das novas florestas após a grande extinção.

O exemplo é um convite para imaginar o que acontecerá depois da extinção em massa que estamos causando. Quais espécies sobreviverão a esta hecatombe humana? A quem caberá recuperar os ecossistemas terrestres uma vez que nós estivermos extintos?

João F. Botelho (Yale University)

 

Para saber mais:

Claramunt S, Cracraft J. A new time tree reveals Earth history’s imprint on the evolution of modern birds. Science Advances. 2015;1(11).

Field DJ, Bercovici A, Berv JS, Dunn R, Fastovsky DE, Lyson TR, et al. Early Evolution of Modern Birds Structured by Global Forest Collapse at the End-Cretaceous Mass Extinction. Curr Biol. 2018;28(11):1825-31.e2.

Louchart A, Viriot L. From snout to beak: the loss of teeth in birds. Trends Ecol Evol. 2011;26(12):663-73.

Imagem de abertura: Philipp M. Krzeminski.

Ambiente, fenótipo e genótipo: uma visão ampla do processo evolutivo

Ao observar atentamente a variação na forma dos animais e plantas na natureza, ou em uma visita a um renomado museu de ciências naturais, imediatamente chama a atenção –não importando se o observante é leigo ou cientista – o quão adequado é o ajuste dos organismos ao seu ambiente.

Até meados do século XIX a explicação para esse “design perfeito” evocava uma divindade. Mas em 1859 o naturalista inglês Charles Darwin mudou essencialmente a forma como pensávamos, propondo que a diversidade observada poderia ser explicada em grande parte pela combinação de mutações aleatórias (variabilidade genética) e a seleção não aleatória dessa variação pelo processo de seleção natural. E isso valia para nós humanos também!

Figura 1. As bases genéticas das características adaptativas. Para uma compreensão completa de como a variação é gerada e mantida dentro e entre as populações naturais, é preciso dissecar suas causas imediatas (proximate) e decorrentes (ultimate). Primeiro precisamos entender como a variação de um dado traço (=fenótipo) afeta a aptidão dos indivíduos em seu ambiente local. Por exemplo, qual é o papel da seleção natural, se existente, na geração de variação morfológica? Em segundo lugar, queremos saber a causa imediata da variação: quais são os genes e mutações que codificam diferenças no fenótipo, e como essas variantes genéticas funcionam ao longo do desenvolvimento para produzir características distintas? Obtido de Hoekstra (2010).

Hoje pode parecer simples essa lógica, mas em 1859 a fonte de variação (ou seja, as mutações) e, mais precisamente, o mecanismo pelo qual essa variação era passada através das gerações, era absolutamente desconhecido. Embora o famoso trabalho de Gregor Mendel que mostrava padrões de herança simples em ervilhas lisas e enrugadas tivesse sido publicado em 1866, passaram-se quase 40 anos até que fosse redescoberto ou plenamente considerado. Ou seja, não havia noção da existência de cromossomos, genes ou mesmo o DNA. Mas Darwin notou que os descendentes se pareciam com seus parentais, portanto, ele sabia que os traços podiam ser transmitidos entre gerações; só não tinha ideia de como isso acontecia. Quase cem anos depois, o link que faltava, ou seja, a unidade fundamental de informação hereditária e fonte de novas variações, foi revelado por Francis Crick e James Watson (que descobriram em 1953 a estrutura tridimensional da dupla hélice, demonstrando que o DNA poderia se replicar).

Desde então a ciência se moveu muito adiante e acumulou grandes conhecimentos na área da genética. Entretanto, as mesmas questões que motivaram Darwin continuam inspirando gerações de cientistas: como e por que os organismos têm morfologias e comportamentos tão distintos? A grande diferença é que hoje conseguimos buscar as respostas a essas questões no DNA, revelando mudanças precisas que permitem aos organismos se adaptarem ao ambiente (Figura 1).

Já em 1900 os fundadores da genética de populações debatiam, através de modelos matemáticos e estatísticos como a adaptação ocorre: se através de grandes saltos (ou seja, um pequeno número de mutações, cada uma com efeito grande no fenótipo) ou pequenos passos (isto é, acumulo de diversas mudanças de menor efeito). Esse tema ainda é amplamente discutido na ciência, que busca também esclarecer se a adaptação procede através de mutações recessivas ou dominantes; se os genes envolvidos agem independentemente ou interagem para produzir características adaptativas, se mutações benéficas tendem a afetar a função da proteína (ou seja, mutações na própria proteína) ou sua expressão espacial ou temporal (ou seja, mutações fora da proteína que controla sua regulação).

Se o cuidadoso observante tiver a oportunidade de ver diversos indivíduos de uma mesma espécie lado a lado, como na coleção científica de um museu de história natural, muito provavelmente notará que existem variações morfológicas também dentro das espécies, e ainda traços muito similares em espécies distantes evolutivamente. Vamos pensar que se um dado fenótipo ocorre repetidas vezes na natureza (de forma independente), não seria de se perguntar com que frequência à seleção natural depende dos mesmos genes e/ou mutações para conduzir a traços similares em diferentes populações ou espécies?

Até meados de 1990 se considerava que as grandes diferenças fenotípicas eram resultado de inúmeras substituições gênicas, cada uma com efeito relativamente pequeno. No entanto, a partir da possibilidade de sequenciamento de DNA em larga escala os estudos com genes que regulam o processo de desenvolvimento, e codificantes de receptores e sinalizadores de complexas redes metabólicas, sugerem que poucas mutações podem ter grande efeito, afetando diretamente a morfologia.

A viagem a bordo do Beagle pela América do Sul e Central em 1831 proporcionou um laboratório vivo para o Darwin. Dentre tantos exemplos de diversidade fenotípica um em especial chamou a atenção do naturalista: a variação na forma e tamanho do bico dos tentilhões nas distintas ilhas do arquipélago de Galápagos que notoriamente estava relacionado a uma variedade de tipos de alimentação (Figura 2). Mais adiante os tentilhões de Darwin se tornaram um exemplo clássico de diversificação de espécies através da seleção natural.

Figura 2. Diversidade na forma do bico dos tentilhões de Galápagos. Obtido de: http://www.schoolbag.info

Curiosamente, nos últimos 15 anos, ferramentas moleculares modernas permitiram determinar o papel dos genes Bmp4, Calmodulina e ALX1 na variação craniofacial dos tentilhões de Darwin, cujas diferenças no padrão de expressão dos genes ao longo do desenvolvimento foram associadas à forma e tamanho do bico. Esse é um exemplo clássico de bem sucedida associação causal de um dado fenótipo morfológico e um genótipo específico.

Ainda na rica região Neotropical encontramos outro exemplo de variação morfológica associada à dieta: os morcegos da família Phyllostomidae. Também conhecidos como filostomídeos, representam um dos grupos mais diversos não só entre os morcegos, como mamíferos em geral. O mais curioso são as especializações desse grupo, que se alimentam desde néctar, frutas, insetos, carne, grãos até sangue. Uma análise até mesmo superficial da estrutura craniofacial permite perceber alterações na mandíbula e palato (e também dentição) específicas para cada tipo alimentar, também incluindo tamanho e forma como no bico dos tentilhões de Galápagos (Figura 3). A mudança mais caraterísticas é o focinho alongado nas espécies que se alimentam de néctar. E será que as alterações morfológicas craniofaciais nos morcegos poderiam ter a mesma base genética identificada nos tentilhões?

Figura 3: Relações evolutivas entre espécies de morcegos filostomídeos evidenciando a variação morfológica observada na maxila superior e os hábitos alimentares (legenda interna: N, nectarívoro; F, frugívoro; I, insetívoro; H, hematófago; C, carnívoro; O, onívoro). Espécies: A. Chrotopterus auritus, B. Diphilla ecaudata, C. Desmodus rotundus, D. Mimon crenulatum, E. M. bennettii, F. Phyllostomus hastatus, G. P. elongatus, H. Lophostoma silviculum, I. Sturnira tildae, J. S. lilium, K. Artibeus obscurus, L. A. jamaicensis, M. A. lituratus, N. A. watsoni, O. A. glaucus, P. A. gnomus, Q. Chiroderma villosum, R. C. doriae, S. Vampyrodes caraccioli, T. Vampyressa pusilla, U. Rhinophylla pumilio, V. R. fischerae, X. Carollia subrupha, Z. C. perspicillata, Ab. Glyphonycteris sylvestris, Bb. Glossophaga soricina, Bc. G. commissarisi, Bd. Pygoderma bialbiatum, Be. Anoura caudifer, Bf. A. geoffroyi, Bg. Lochophylla thomasi. Obtido de Ferraz (2016).

Poderíamos, portanto, pensar no papel dos mesmos genes, pois seriam potenciais candidatos a explicar tal variação. Mas com o avanço de estudos em modelos animais e de genética humana clínica, emergiram outros genes do desenvolvimento específicos de alterações na morfologia craniofacial que são melhores candidatos a explicar a origem da variação observada nesse grupo de morcegos, por exemplo, os genes do fator de crescimento fibroblástico (FGF), e fatores de transcrição das famílias RUNX e PAX.

Vamos considerar especificamente no gene RUNX2 (fator de transcrição relacionado ao Runt 2), que já foi demonstrado ter grande efeito na variabilidade craniofacial dos mamíferos, associado à formação do tecido ósseo, portanto, essencial para a osteogênese. O RUNX2 contém uma região de repetição de aminoácidos em tandem que precede o domínio, com um segmento rico em glutamato (poli Q), seguido por outro rico em alanina (poli A) que desempenha papel importante na ativação e repressão de proteínas essenciais para o desenvolvimento craniofacial. Embora estudos prévios com cães de raça e carnívoros silvestres de distintas morfologias tenham encontrado uma correlação positiva entre a proporção de Q para A no domínio de repetição desse gene (também chamada de taxa Q/A) e o comprimento craniofacial, quando se analisou mamíferos placentários não carnívoros e marsupiais, não foi verificado tal correlação.

Voltando a incrivelmente diversa linhagem de morcegos filostomídeos. A variação morfológica craniofacial é significativa não somente entre grupos de espécies que formam guildas alimentares, mas também dentro de alguns desses grupos, como aquele dos frugívoros. E essa admirável variação também foi recuperada na taxa Q/A do RUNX2 dos morcegos. A diferença é que pela primeira vez foi demonstrada a associação desse gene com o encurtamento e alargamento do rosto dos filostomídeos (Figura 4), ou seja, o oposto do padrão (=aumento no comprimento) verificado em cães, carnívoros e também em primatas do novo mundo.

Esse exemplo nos mostra que a conexão de uma dada característica morfológica com um genótipo causal é mais complexa ainda. Notamos, portanto, que em determinados casos não se trata de encontrar as mesmas mutações (ou padrões de expressão diferencial) em espécies distintas, mas sim um ajuste fino no mesmo mecanismo (como o gene RUNX2) para explicar as bases de fenótipos similares. Portanto, o processo adaptativo pode usar de formas alternativas de um mesmo caminho, ou mesmo caminhos distintos, para chegar ao mesmo lugar.

Figura 4. Correlações entre a taxa Q/A e comprimento do palato (A), filostomídeos; (C) macacos do Novo Mundo) e largura do palato (B), filostomídeos.

A ciência tem se movido a passos largos desde os achados de Darwin e Watson e Crick. Mas para cada pergunta respondida desdobram-se novas dúvidas. Enquanto relevamos as bases moleculares do que Darwin chamava de “aquela perfeição de estrutura e co-adaptação que justamente estimula nossa admiração”, aprendemos com a espetacular evolução da diversidade morfológica dentro e entre as espécies.

Gislene Lopes Gonçalves

UFRGS e Universidad de Tarapacá, Chile

Sugestões de leitura:

  • Ferraz T, Rossoni DM, Althof SL, Pissinatti A, Paixão Cortês VR, Bortolini MC, González-José R, Marroig G, Salzano FM, Gonçalves GL, Hünemeier T (2018). Contrasting patterns of RUNX2 repeat variations are associated with palate shape in phyllostomid bats and New World primates. Scientific Reports 8:7867
  • Hoekstra H (2010). From Darwin to DNA: The Genetic Basis of Color Adaptations. In: In the Light of Evolution: Essays from the Laboratory and Field (Ed. Losos J). Roberts and Company Publishers.
  • Lamichhaney S, Berglund J, Almén MS, Maqbool K, Grabherr M, Martinez-Barrio A, Promerová M, Rubin C-J, Wang C, Zamani N, Grant BR, Grant PR, Webster MT, Andersson L (2015). Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature, 518: 371–375.

A seleção molda a diversidade genética

Algumas espécies tem tamanhos populacionais imensos, mas possuem diversidade genética semelhantes à de espécies com tamanhos populacionais muito menores. Por quê? O estudo da seleção natural pode ser a chave para a resposta.

O cabo de guerra: mutação versus deriva

A teoria evolutiva é capaz de fazer previsões sobre o que esperamos encontrar na natureza. Uma das mais importantes diz respeito à variabilidade genética. Para evolucionistas, a diversidade genética de uma espécie deve ser proporcional ao tamanho populacional. Esperamos que espécies com muitos indivíduos tenham mais diversidade genética do que espécies com poucos indivíduos.

Continue Lendo “A seleção molda a diversidade genética”

Quer saber sua origem? Pergunte aos microrganismos e a Loki.

Num post aqui do Darwinianas, João Francisco Botelho falou sobre os microrganismos que habitam o corpo humano e explicou que através do desenvolvimento de técnicas de biologia molecular conseguimos acessar uma grande diversidade antes não conhecida de microrganismos difíceis de cultivar em laboratório. Neste meu primeiro post aqui do Darwinianas vou falar um pouco mais sobre uma dessas abordagens, a metagenômica, com a qual trabalho rotineiramente no meu Laboratório.

O termo “metagenômica” foi cunhado pela pesquisadora Jo Handelsman em 1998 e quer dizer “além do genoma”. A abordagem consiste basicamente em coletar amostras ambientais (por exemplo, de saliva humana a sedimentos de fossas marinhas abissais) e extrair e sequenciar simultaneamente o DNA de todos os microrganismos presentes nesta amostra. Com essas sequências em mãos podemos saber quem são os microrganismos presentes na amostra e o que eles potencialmente estão fazendo, pois podemos saber quais são os genes que estão presentes ali. Para fazer isso, os cientistas tinham que fragmentar o DNA metagenômico, colar em outros pedaços de DNA (por exemplo, plasmídeos) e inserir em bactérias para poder separar (ou isolar) os fragmentos, para depois disso dar significado biológico a essas sequências. Esse procedimento, era muito caro e laborioso, mas com os avanços tecnológicos hoje é possível “ler” uma quantidade extremamente maior de material genético, em muito menos tempo, a um custo muito menor.

Essa revolução tecnológica fez com que os bancos de dados de sequências crescesse muito, o número de genomas de referência (usados para dar significado biológico às sequências) também crescesse e novas abordagens e desafios fossem aparecendo. Com a massiva geração de novos dados, é possível reconstruir genomas inteiros a partir das sequências metagenômicas. A descoberta de alguns novos genomas tem contribuído muito para a expansão do conhecimento da biodiversidade e da e sobre as relações de parentesco entre os organismos. Ressalto aqui dois exemplos.

Em um trabalho liderado pela pesquisadora Jillian Banfield, centenas de novos grupos de bactérias extremamente pequenas e de biologia incomum foram descobertos em aquíferos contaminados por urânio através da reconstrução de novos genomas. Esses novos grupos (filos) representam uma expansão de 15% do da diversidade conhecida de bactérias e têm uma origem evolutiva comum. Esses microrganismos peculiares podem estar desempenhando funções importantes na ciclagem de matéria, por exemplo, de nitrogênio, carbono, enxofre.

Outro trabalho, liderado pelo pesquisador Thijs Ettema, analisou amostras de sedimento próximos a uma fumarola (chamada de “Castelo de Loki”, em homenagem ao deus nórdico de mesmo nome) a 2.383 metros de profundidade no Mar do Norte. A partir das sequências metagenômicas, os pesquisadores conseguiram montar novos genomas de microrganismos pertencentes a um novo filo do Domínio Archaea, Lokiarchaeota, em homenagem ao deus Loki. É muito interessante que estejam presentes nesses genomas recentemente descobertos vários genes considerados exclusivos de eucariotos. Esse novo filo “bagunçou” a árvore da vida, sugerindo que nós, eucariotos, somos fruto da evolução de uma célula arqueana que fagocitou uma bactéria.

Diversos grupos de pesquisa ao redor do globo vêm se dedicando a essas abordagens e milhares de novos genomas de microrganismos e vírus estão sendo recuperados de amostras disponíveis em bases de dados públicas, elucidando importantes questões científicas. Porém, os desafios são grandes. É necessário um grande poder computacional e habilidades de programação para analisar volumes tão grandes de dados em tempo hábil. Só para se ter ideia, o sequenciamento de uma amostra metagenômica pode gerar um arquivo texto (composto apenas por “A”, T”, “C” e “G”, os nucleotídeos que constituem o DNA) de mais de 50 Gigabytes! As novas tecnologias e abordagens estão revolucionando a forma como estudamos a vida de maneira muito rápida, trazendo a possibilidade de fazer novas perguntas e avançar ainda mais na nossa compreensão da natureza, da diversidade da vida e do fazer científico.

Pedro Milet Meirelles 

Instituto de Biologia da UFBA

Figura de Capa: Representação do Deus nórdico Loki, que inspirou a nomeação de um grupo de microrganismos que podem fornecer pistas sobre nossa origem evolutiva (Fonte: https://norse-mythology.org/gods-and-creatures/the-aesir-gods-and-goddesses/loki/).

Para Saber mais:

Anantharaman, K., Brown, C. T., Hug, L. A., Sharon, I., Castelle, C. J., Probst, A. J., et al. (2016). Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat. Commun. 7, 13219. doi:10.1038/ncomms13219. (https://www.nature.com/articles/ncomms13219)

Brown, C. T., Hug, L. A., Thomas, B. C., Sharon, I., Castelle, C. J., Singh, A., et al. (2015). Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 523, 208–211. doi:10.1038/nature14486. (https://www.nature.com/articles/nature14486)

Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J., and Goodman, R. M. (1998). Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5, R245–9. (https://www.cell.com/cell-chemical-biology/pdf/S1074-5521(98)90108-9.pdf)

Parks, D. H., Rinke, C., Chuvochina, M., Chaumeil, P.-A., Woodcroft, B. J., Evans, P. N., et al. (2017). Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 903, 1–10. doi:10.1038/s41564-017-0012-7. (https://www.nature.com/articles/s41564-017-0012-7)

Roux, S., Brum, J. R., Dutilh, B. E., Sunagawa, S., Duhaime, M. B., Loy, A., et al. (2016). Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537, 689–693. doi:10.1038/nature19366. (https://www.nature.com/articles/nature19366)

Spang, A., Saw, J. H., Jørgensen, S. L., Zaremba-Niedzwiedzka, K., Martijn, J., Lind, A. E., et al. (2015). Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179. doi:10.1038/nature14447. (https://www.nature.com/articles/nature14447)

De humanos a formigas: o ínfimo infinito

Na interface entre o indivíduo e o coletivo existimos. Dificilmente seríamos viáveis em isolamento social. Se vez em sempre desejamos a paz das montanhas, a quietude de um por de sol, ou a solenidade de um céu carregado de estrelas, o estar apenas conosco trazendo ganhos de entendimento sobre nós mesmos, o mesmo não vale para uma vida inteira.

Crescemos sociais em vários níveis, seja no interior da família, das amizades concretas, da vizinhança, num crescente vertiginoso até o todo fora das amizades virtuais: onde quer que estejamos, podemos mesmo dizer que não estamos sós nunca, haja visto o esforço que requer a meditação, o treino intenso para amainar essa gritaria interna do mundo de vozes que nos pensa.

Continue Lendo “De humanos a formigas: o ínfimo infinito”

Interruptores moleculares e a diversidade das espécies

Ao olhar a diversidade dos organismos, naturalmente nos questionamos sobre a origem da riqueza das formas, dos tamanhos, das funções. Esta, no entanto, não é uma pergunta nova. Charles Darwin, assim como muitos antes dele, fez este mesmo questionamento e propôs que todas as espécies estão relacionadas umas às outras em uma única filogenia. Mas mesmo após seu trabalho, e por grande parte do século 20, pouco se sabia sobre as bases moleculares das diferenças entre as espécies.

François Jacob, um dos cientistas que construíram o primeiro modelo explicativo da regulação da transcrição, disse em uma de suas entrevistas que, quando iniciou sua carreira em biologia, nos anos 1950, a ideia predominante para explicar essas diferenças era de que as moléculas de um organismo eram diferentes das moléculas de outro organismo. Por exemplo, “vacas teriam moléculas de vacas, cabras teriam moléculas de cabras e cobras teriam moléculas de cobras”. 

Continue Lendo “Interruptores moleculares e a diversidade das espécies”