Bico doce: a evolução da percepção de açúcar nas aves

Muitos animais, no qual eu me incluo, amam comidas doces. Outros, como gatos, golfinhos e a maioria das aves, são indiferentes. Nós, que amamos doces, sentimos a doçura dos alimentos quando moléculas de açúcares se ligam a receptores presentes nas papilas gustativas. O receptor que reconhece açúcares é produzido a partir de um gene chamado T1R2. Muitas espécies especializadas em uma dieta pobre em açúcares perderam esse gene durante a evolução e tornaram-se insensíveis ao sabor doce. As aves, por exemplo, que evoluíram de dinossauros carnívoros, não possuem o gene T1R2 em seu genoma. No entanto, todos sabemos que algumas aves tropicais, como os beija-flores, amam comer néctar, o líquido adocicado produzido pelas flores para atrair polinizadores.

Um estudo publicado em 2014, na revista Science, liderado pela ornitóloga Maude Baldwin, iluminou esse mistério. Mostrou que o receptor para o sabor umami, que normalmente se liga ao aminoácido glutamato e produz o sabor suave e duradouro de alimentos como shoyo, peixes e queijos, está modificado nos beija-flores para perceber açúcares. Ao contrário de uma galinha, que não tem preferência entre água pura ou água com açúcar, os beija-flores buscam freneticamente o dulçor do néctar, mas sem poder diferenciar entre os sabores doce e umami.

No entanto, os beija-flores só existem no continente americano. Em outros continentes, as aves que se especializaram em comer néctar são passeriformes, como os sunbirds e honeyeaters, e não são aparentadas aos beija-flores. Em um novo estudo, publicado na semana passada na revista Nature, o grupo de Maule mostrou que os passeriformes também usam uma modificação do receptor de umami, mas em outra parte da molécula, o que indica que a percepção de açúcar evoluiu independentemente nos dois grupos por meio de um truque similar. Além disso, o estudo mostrou que não só os passeriformes que comem néctar, mas todo o grande grupo dos oscinos, que contém quase a metade de todas as espécies de aves, são capazes de perceber o sabor doce usando o receptor de umami.

Além de esclarecer a origem do gosto por açúcar nos passeriformes, o trabalho mostra uma história evolutiva complexa. Os oscinos se originaram na Austrália e a presença de um receptor sensível a alimentos doces indica que o ancestral de todos eles era um pássaro que se alimentava na flora australiana, famosa por sua abundância de néctar, olores e sabores, e posteriormente deu origem a milhares de espécies com dietas variadas. A presença do receptor para o sabor doce em espécies que não têm dietas ricas em açúcares aponta para a importância da combinação de modalidades sensoriais para a seleção do alimento. A maioria das aves escolhe a comida primariamente orientada pela visão e não por acaso as espécies nectívoras buscam preferencialmente flores vermelhas. As papilas gustativas, que em aves são poucas e localizadas na parte posterior da boca, atuam mais na confirmação ou rejeição de alimentos. Por último, a preferência por cores brilhantes nas aves que se alimentam de frutas e néctar pode ser responsável por muito da beleza observada nessas aves, pois a preferência alimentar pelas cores vivas das flores e frutas maduras pode ter influenciado a seleção sexual de penas coloridas, resultando que muitas das aves de cores mais espetaculares são aquelas que amam a doçura.

João Francisco Botelho

(PUC de Chile)

Para saber mais:

Baldwin, Maude W., et al. “Evolution of sweet taste perception in hummingbirds by transformation of the ancestral umami receptor.” Science 345.6199 (2014): 929-933.

Toda, Yasuka, et al. “Early origin of sweet perception in the songbird radiation.” Science 373.6551 (2021): 226-231.

Nossa Família Cresceu

Descobertas recentes, como a do Homem Dragão (imagem) e o Homem de Nesher Ramla, trazem novas e desafiadoras perguntas sobre a origem de nossa espécie.

A visão clássica sobre a evolução de nossa espécie (Homo sapiens) considerava nossa origem no oriente africano subsaariano há cerca de 200 mil anos, seguida por uma dispersão acompanhada por diversificação dentro da África por mais de 100 mil anos. Há 60 mil anos teríamos então começado nossa jornada para os demais continentes, onde teríamos coexistido com uma espécie-irmã, os neandertais (Homo neanderthalensis), na Europa. Esses nossos parentes mais famosos, teriam se diferenciado de um ancestral comum ao nosso há cerca de 400 mil anos, enquanto nossa espécie seria derivada dessa mesma espécie comum que ainda habitava a África. Estudos indicam que essa espécie ancestral comum seria relacionada ao Homo erectus, que se originou na África há cerca de 1,8 milhões de anos, e coexistiu com humanos e neandertais até sua extinção, há cerca de 100 mil anos (Figura 1).

Imagem1g

Figura 1. Origem, dispersão e coexistência das espécies Homo (Fonte).

Desde os anos 2000, foram incluídos no gênero Homo diferentes espécies que viveram no Pleistoceno médio e tardio, tais como H. floresiensis, descoberto em 2003 na Indonésia, os denisovanos identificados em 2010 na Sibéria, o H. naledi, descrito 2015 no sul da África; e o H. luzonensis, encontrado em 2019 nas Filipinas. Em 2010, com a possibilidade do estudo de genomas de espécimes extintos, a visão clássica sobre nossa origem foi substituída por uma mais ampla, que considera que as espécies derivadas de Homo erectus em diferentes continentes, como humanos, neandertais, e o então novo membro de nossa família, homem de Denisova, teriam não só coexistido, mas também cruzado e deixado descendentes (Figura 2). Nossa espécie, como única sobrevivente dessa tríade, carrega em seu genoma fragmentos do DNA de nossos primos extintos. Essas introgressões de material genético de outros Homo levou a uma série de vantagens adaptativas, principalmente na resposta a patógenos e na adaptação a grandes altitudes. Ao mesmo tempo, várias regiões do genoma humano apresentam ausência total desses fragmentos, o que poderia indicar uma seleção contra certas características predominantes em nossos correlatos. Interessantemente, a maioria dos genes encontrados nesses desertos de fragmentos de hominídeos extintos estão relacionados com reprodução e desenvolvimento do sistema nervoso.

Imagemt1

Figura 2. Árvore filogenética mostrando as relações entre as espécies de Homo, e os cruzamentos entre humanos, neandertais e denisovanos. Embora a figura não represente uma miscigenação entre denisovanos e neandertais, ela é evidente em estudos genéticos recentes (ver https://darwinianas.com/2018/10/09/denny-a-menina-meio-neandertal-meio-denisovana/) (Fonte: The Economist).

Recentemente, novos achados paleontropológicos e genômicos têm mudado ainda mais a história da nossa espécie, principalmente em relação ao período e dinâmica da expansão fora da África, e subsequente contato com outras espécies de Homo, e ao período de origem dentro da África. Em relação ao período e local de origem do H. sapiens, uma série de crânios encontrados em Marrocos, ou seja, no noroeste africano ao norte do Saara, desloca em 100 mil anos para o passado e em milhares de quilômetros ao ocidente o que poderia ser considerado o berço dos humanos modernos. Por outro lado, estudos com DNA mitocondrial completo apontam para uma origem mais recente, e no sudoeste africano, tornando o quebra cabeça de nosso passado maior e mais incompleto.

No final de junho de 2021, nossa família aumentou outra vez, com a publicação de dois achados importantes: partes de crânios que parecem ser um mosaico entre neandertais e Homo arcaicos, encontrados do Oriente Médio, e um crânio extremamente robusto, muito similar aos Homo antigos, encontrado na China, ambos datados entre 120 e 140 mil anos antes do presente, e trazendo com suas descobertas mais perguntas do que respostas.

O indivíduo encontrado no Oriente Médio, chamado de homem de Nesher Ramla (ainda sem definição de espécie), apresenta mandíbula e dentes similares aos neandertais e crânio relacionado a espécies mais arcaicas (Figura 3). Esses ossos encontrados parecem estar relacionados a uma série de esqueletos incomuns encontrados na mesma região, abrangendo um período de 400 mil anos. Surpreendente, esses indivíduos de 120 mil anos parecem ter desenvolvido ferramentas muito parecidas com as dos humanos do mesmo período. E o mais importante: esse achado deslocaria a origem dos neandertais do norte da Europa para o Oriente Médio. O crânio chinês foi originalmente encontrado em 1930, mas só agora estudado em profundidade. Esse indivíduo, classificado como Homo longi (ou Homem Dragão), foi nomeado fazendo referência ao local em que foi encontrado, na Província de Heilongjiang, Long Jiang, que significa Rio do Dragão. O crânio encontrado é notavelmente grande quando comparado com outros indivíduos da mesma época, sendo maior que os dos humanos atuais (Figura 4), e apresentando potencialmente grande volume cerebral. No entanto, a classificação de uma espécie com base em apenas um registro ósseo é incomum e controversa. Os autores inferem que esse indivíduo seria uma espécie mais próxima de nossa espécie do que dos neandertais. Além disso, há controvérsias também sobre a grande variedade de espécies agrupadas como relacionados ao H. sapiens desde 2000, que poderia dificultar a classificação correta do Homem Dragão. Uma outra explicação mais viável para a presença desse espécime nessa região em um período tão remoto seria que esse indivíduo estaria relacionado com os primeiros neandertais que migraram para a Ásia, e que mais tarde poderiam ter originado o misterioso Homem de Denisova, do qual nenhum crânio completo ainda foi encontrado.

Imagem11

Figura 3. Fragmentos ósseos do homem de Nesher Ramla, encontrados no Oriente Médio, datados em 140 mil anos. (Fonte: dailymail.co.uk)

Imagem12

Figura 4. Crânio do Homem Dragão comparado com humano. (Fonte: cameroncolony.com)

As respostas sobre nossas origens ainda são escassas, e as perguntas têm se tornado mais complexas conforme novas espécies vem sendo encontradas e novos dados genômicos conseguem ser gerados. No entanto, algo importante a ser aprendido é que nossa história é muito mais intrincada do que se pensava e fortemente relacionada a diversas espécies que não prosperaram. Provavelmente, diferentes hominídeos se diferenciaram em diferentes regiões e muitos deles se relacionaram em si, tornado a linearidade na nossa origem cada vez menos crível. Éramos uma grande família que tomou diferentes ramos evolutivos ao longo do tempo e espaço.

Tábita Hünemeier

IB/USP

PARA SABER MAIS:

Walter Neves, Rui Murrieta e Miguel Rangel Junior (2015) Assim caminhou a humanidade. Editora Palas Athena, 320pp.

Adam Rutherford (2020) Livros dos Humanos: A história de como nos tornamos quem somos. Editora Record, 252pp.

Imagem: Reconstrução feita a partir do crânio do Homem Dragão.Fonte: https://ichef.bbci.co.uk/news/976/cpsprodpb/4E36/production/_119022002_realpic1jpeg.jpg

Por uma síntese evolutiva mais inclusiva: a Epigenética e a evolução do genoma

Um artigo de revisão publicado no início desse ano fez um apanhado das várias maneiras pelas quais os mecanismos epigenéticos estão associados não apenas aos padrões de expressão gênica mas também a mutações no DNA, influenciando em larga escala a maneira como os genomas evoluem.

Uma das buscas incessantes da Biologia é a da descoberta dos mecanismos evolutivos e suas respectivas contribuições para a diversidade dos organismos vivos. Desde Darwin, a seleção natural é, sem dúvida, um dos processos evolutivos mais importantes, mas a lista hoje é relativamente longa. Processos como a deriva gênica, as migrações e mutações, por exemplo, fazem parte dessa lista. E quanto mais estudamos, mais descobrimos outros processos importantes para entendermos como os organismos vivos evoluem.

Nas últimas três décadas, com a revolução nos métodos de sequenciamento de DNA, o estudo dos genomas se tornou possível em larga escala, inaugurando uma nova área de pesquisa biológica, a Genômica. Consequentemente, a pergunta “Como os genomas evoluem?” foi um questionamento natural para os pesquisadores desse novo campo. E diversos processos já foram identificados para explicar a evolução do genoma, tais como as duplicações completas de genomas (do inglês whole genome duplications), já discutidas em um post aqui no Darwinianas, a transposição dos elementos genéticos móveis e os rearranjos genômicos. Recentemente, os mecanismos epigenéticos, até então primariamente envolvidos no estabelecimento dos padrões de expressão gênica, se tornaram foco dos estudos sobre evolução do genoma. Discutiremos nesse post não apenas de que maneira os mecanismos epigenéticos podem influenciar a evolução dos genomas, mas também quais as principais implicações dessa descoberta para o nosso entendimento a respeito da evolução biológica em geral.

Antes de nos debruçarmos especificamente sobre a maneira pela qual os processos epigenéticos contribuem para a evolução do genoma, vamos entender o que quero dizer com processos epigenéticos.  A Epigenética estuda as modificações químicas no DNA e nas proteínas a ele associadas sem, no entanto, resultar na modificação da sequência do DNA em si. Hoje conhecemos diversos mecanismos epigenéticos, e focarei em apenas dois dos principais: a metilação do DNA e as modificações das histonas, o principal grupo de proteínas associado ao DNA dos eucariotos, formando, através da associação DNA-histonas, o que chamamos de cromatina (Figura 1).

Figura_1

Figura 1 – Representação do DNA e do nucleossoma. (A) Uma representação da dupla hélice de DNA, enfatizando em cores, os nucleotídeos que formam a sequência do DNA. Os círculos pretos ressaltam os grupos metila (CH3) associados a citosinas (C). (B) Visualização do nucleossoma, resultado da associação entre o DNA, em azul, e as proteínas histonas, em vermelho. Note como as histonas projetam “caudas” para além do DNA (setas). Essas caudas são as regiões onde ocorrem as modificações das histonas, alterando assim a interação dessas proteínas com o DNA.

A metilação do DNA ocorre geralmente por meio da adição de um grupo metila (CH3) a citosinas, apesar de hoje sabermos que outros nucleotídeos também podem sofrer metilação. Quando essa metilação ocorre perto de genes, estes são, em geral, silenciados, ou seja, têm a sua expressão significativamente reduzida. Outro tipo de marca epigenética ocorre por modificação química das “caudas” das proteínas histonas, como mostra a Figura 1B. Variados grupos químicos podem ser adicionados as histonas, com consequências diversas para a expressão dos genes localizados na proximidade. A explicação mais aceita para o efeito dessas modificações nos padrões de expressão gênica se deve à força de atração entre as histonas e o DNA: quando a atração é forte, ela dificulta o acesso ao DNA da maquinaria de transcrição, primeiro passo para a expressão gênica. O inverso também é verdadeiro: quando a associação é mais fraca, o DNA fica mais accessível e os genes ali presentes são, em geral, mais expressos.

Exatamente por não afetar a sequência de nucleotídeos do DNA, os mecanismos epigenéticos sempre estiveram associados ao estabelecimento dos padrões de expressão gênica e raramente foram implicados em mecanismos capazes de explicar a evolução do genoma em si.  Um artigo publicado recentemente, no entanto, nos ajudou a desafiar essa ideia, através da apresentação do que sabemos a respeito do papel dos mecanismos epigenéticos na alteração da sequência de nucleotídeos do DNA, influenciando, direta e indiretamente, a evolução do genoma. Em geral, esses mecanismos estão envolvidos na evolução do genoma ao menos de três formas: (1) por afetar os processos de mutação e reparo do DNA, (2) por alterar a atividade dos elementos móveis do genoma, e (3) por influenciar a retenção de genes duplicados no genoma.

Há muito tempo sabemos que a metilação do DNA não apenas interfere nos padrões de expressão gênica, mas pode atuar também como agente mutagênico. As regiões metiladas do DNA apresentam taxas de mutações mais elevadas quando comparadas a outras regiões não metiladas do mesmo DNA. Sabemos também que as citosinas metiladas são mais susceptíveis a um processo de mutação conhecido como desaminação espontânea, resultando na sua modificação para uma timina (C  T). Com o tempo, essa aumentada taxa de mutação resulta na redução de citosinas no DNA e parece não ocorrer de maneira uniforme no genoma. Além disso, o posicionamento dos nucleossomas no DNA também afeta as taxas de mutação ao longo do genoma. Sabemos que DNA ligado fortemente a histonas é mais estável e apresenta menores taxas de mutação do que regiões onde o DNA liga-se apenas fracamente a essas proteínas. A explicação para essa diferença está na associação entre o grau de interação DNA-histonas e expressão gênica, como explicado acima. O primeiro passo da expressão gênica é a transcrição, a produção de uma molécula de RNA mensageiro a partir do gene localizado no DNA. Para que isso aconteça, no entanto, o DNA, normalmente fita dupla, precisa se abrir em fita simples, permitindo assim o acesso da maquinaria de transcrição. E DNA de fita simples está sujeito a mutações em uma frequência mais elevada do que o DNA de fita dupla. Além disso, o posicionamento dos nucleossomas e a força de interação DNA-histonas interfere também no acesso ao DNA das enzimas de reparo do DNA.

Além disso, mecanismos epigenéticos são eficientes em inibir o movimento dos elementos genéticos móveis. Os elementos genéticos móveis podem interromper a atividade de um gene ou alterar a sua expressão, a depender do local onde um elemento móvel seja inserido no genoma. Por inibir o movimento dos elementos genéticos móveis, os mecanismos epigenéticos controlam, ao menos em parte, mutações derivadas do movimento desses elementos. E acreditamos hoje que alguns dos mecanismos epigenéticos promoveram um aumento do fitness como resultado da sua capacidade de suprimir o movimento dos elementos móveis no genoma e foram, portanto, favorecidos pela seleção natural.

Talvez a contribuição mais fascinante dos mecanismos epigenéticos para a evolução do genoma esteja na sua influência sobre a retenção de genes duplicados.  Não há dúvidas de que a duplicação gênica é um importante processo evolutivo, além de ser um fenômeno bastante comum em praticamente todos os genomas estudados até hoje. E devido à redundância funcional entre o gene duplicado e o gene original, um resultado comum da duplicação gênica é o acúmulo de mutações que tornam uma das cópias não funcional. Assim, um dos passos principais para a manutenção de genes duplicados no genoma é a retenção inicial das duas cópias logo após a duplicação. E os processos epigenéticos fornecem um mecanismo pelo qual o silenciamento de genes duplicados pode proteger esses genes da seleção natural, aumentando sua probabilidade de retenção. Marcas epigenéticas são capazes de reduzir a expressão dos genes duplicados, prevenindo também a produção de um possível fenótipo com efeitos negativos sobre o fitness, isto é, sobre o sucesso reprodutivo do indivíduo. Os dados experimentais até então apoiam essa ideia: os padrões epigenéticos de genes duplicados e de genes de cópia única são distintos, e entre os genes duplicados, uma das cópias frequentemente exibe uma maior quantidade marcas epigenéticas, o que resulta também em diferenças na expressão das duas cópias.

Quanto mais nos debruçamos sobre os genomas dos vários organismos, hoje já sequenciados, percebemos a importância dos mecanismos epigenéticos na produção dos padrões evolutivos que observamos em seus genomas. Os mecanismos epigenéticos estão envolvidos não apenas no estabelecimento de padrões de expressão gênica, mas também na evolução molecular dos eucariotos. Precisamos, assim, de uma visão da evolução orgânica que seja abrangente o suficiente para levar em consideração os mecanismos epigenéticos, assim como vimos fazendo nas últimas décadas com os mecanismos do desenvolvimento. Não se trata, assim, de negar os mecanismos evolutivos já bastante estabelecidos, como a seleção natural ou a deriva genética, mas sim, como sugeriram Danchin e colaboradores, de construir uma síntese evolutiva ainda mais inclusiva.

 

Ana Almeida

California State University East Bay (CSUEB)

 

Para saber mais:

Entrevista com a cientista Eva Jablonka, na Revista do Instituto Humanitas Unisinos On-line. 2009. Epigenética e a teoria da evolução: suas compatibilidades.

Danchin E, Pocheville A, Rey O, Pujol B, Blanchet S. 2019. Epigenetically facilitated mutational assimilation: epigenetics as a hub within the inclusive evolutionary synthesis. Biol. Rev. 94, 259–282.

Feng JX, Riddle NC. 2020. Epigenetics and genome stability. Mamm. Genome 31, 181–195.

Makova KD, Hardison RC. 2015 The effects of chromatin organization on variation in mutation rates in the genome. Nat. Rev. Genet. 16, 213–223.

Schrader L, Schmitz J. 2019. The impact of transposable elements in adaptive evolution. Mol. Ecol. 28, 1537–1549.

Percharde M, Sultana T, Ramalho-Santos M. 2020. What doesn’t kill you makes you stronger: transposons as dual players in chromatin regulation and genomic variation. Bioessays 42, 1900232.

O pato que pode não voar

No final do ano de 1832, Charles Darwin estava nas Ilhas Malvinas, no extremo sul do continente americano, quando escreveu em seu diário de viagem: “Nessas ilhas, um grande pato … é muito abundante… Suas asas são muito pequenas e fracas para permitir o voo, mas com sua ajuda, parcialmente nadando e parcialmente batendo na superfície da água, eles se movem muito rapidamente…. Esses patos desajeitados e cabeçudos fazem tanto barulho e respingos que o efeito é extremamente curioso.” Em seguida, reflete sobre duas outras aves que havia conhecido na sua viagem e que também não usavam suas asas para voar: emas e pinguins. A ideia de descendência com modificação começava a decolar na sua cabeça.

Embora todas as aves modernas tenham evoluído de ancestrais voadores, várias espécies não voam. Nossas emas, como observou Darwin, estão adaptadas à vida nos cerrados, caatingas e campos, onde correm com suas pernas fortes e asas pequenas. Pinguins “voam” debaixo d’água, com asas transformadas em nadadeiras, ossos pesados e penas que mais parecem escamas. Elas evoluíram de ancestrais voadores, há mais de 60 milhões de anos, e não possuem parentes próximos vivos que nos permitam investigar os detalhes da transição para uma vida longe dos céus.

Os patos que Darwin viu nas ilhas Malvinas oferecem um melhor caso para investigar essas transições. Eles são chamados de quetru (ketru significa pato na língua do povo mapuche) ou patovapor em espanhol e steamer em inglês (em referência aos antigos barcos à vapor com pás laterais). Existem quatro espécies, que pertencem ao gênero Tachyeres (Figura 1). O mais comum é T. patachonicus ou quetru voador, que habita todo o sul da América do Sul, incluindo rios e lagos do interior. As outras três espécies são costeiras e não voam: T. pteneres habita a costa do Chile, pelo lado do Pacífico, T. leucocephalus habita a costa atlântica da Argentina, e T. brachypterus habita as ilhas Malvinas e provavelmente foi a espécie que divertiu o jovem Darwin. As quatro espécies são muito parecidas, sendo difícil identificá-las na água. A principal diferença está no corpo menor e nas penas mais longas das asas e do rabo do quetru voador.

Figura 1: as quatro espécies de Tachyeres (modificado de birdsoftheworld.org).

Em 2012, Fulton e colaboradores compararam o DNA das quatro espécies e fizeram duas descobertas importantes. As espécies não-voadoras não estão mais relacionadas entre si, mas perderam a capacidade de voar independentemente, e indivíduos voadores encontrados nas ilhas Malvinas não são quetrus voadores (T. patachonicus), mas T. brachypterus capazes de voar. Quer dizer, a espécie que habita as ilhas Malvinas tem indivíduos voadores e não-voadores. Já se conhecia uma situação inversa, que alguns machos grandes de quetru voador (T. patachonicus), que habitam ilhas do extremo sul do continente, não são capazes de voar.

Esses dados confirmam dois aspectos importantes na transição evolutiva a espécies não-voadoras. Ela ocorre como um evento variacional em uma população com indivíduos voadores e não-voadores, e em um contexto ecológico que permite e facilita um modo de vida não-voador. Esse contexto é encontrado frequentemente em ilhas isoladas, sem mamíferos terrestres, quando colonizadas por espécies que não dependem do voo para se alimentar. O biguá das Galápagos e o Dodô da ilha de Maurício são dois exemplos famosos (ambas extintas com a chegada de humanos e animais domésticos às ilhas).

Patos têm ainda outra característica que pode facilitar a perda do voo. Asas possuem penas longas e assimétricas especializadas, chamadas de primárias, que a maioria das aves renova uma por vez para não perder a capacidade de voar. Patos renovam anualmente todas as penas primárias de uma vez e não podem voar por aproximadamente um mês. Isso é possível porque a maioria das espécies tem um estilo de vida que permite se alimentar e se proteger sem voar.  De fato, patos não voadores evoluíram outras vezes no arquipélago do Havaí (todas extintas recentemente) e em ilhas subantárticas ao sul da Nova Zelândia (duas espécies ameaçadas de extinção).

Mais recentemente, Campagna e colegas sequenciaram os genomas de 59 indivíduos das quatro espécies de patos em busca das causas da variação na capacidade de voo. Eles não encontraram regiões do genoma claramente associadas à perda do voo e reconheceram que a variação poderia não ser genética. Por exemplo, poderia estar associada à alimentação e aos seus efeitos no tamanho do corpo e comprimento das penas. Outra possibilidade é que as espécies não-voadoras tenham o desenvolvimento das asas atrasado, resultando em uma relação peso/área da asa insuficiente para voar no adulto.

Quase trinta anos depois de ver os patos quetrus pela primeira vez, Charles Darwin escreveu em a Origem das Espécies que “Quando vemos qualquer estrutura altamente aperfeiçoada para qualquer hábito em particular, como as asas de uma ave para voar, devemos ter em mente que os animais que apresentam graus de transição iniciais da estrutura raramente continuarão a existir até os dias de hoje”.  Os patos quetrus são uma dessas raras oportunidades para investigar uma transição evolutiva inicial. Embora ainda não exista uma resposta clara, os dados até agora indicam mecanismos variados, bem ao gosto do velho Darwin.

João Francisco Botelho (PUC de Chile)

Para saber mais:

Campagna, L., McCracken, K.G. and Lovette, I.J. (2019), Gradual evolution towards flightlessness in steamer ducks*. Evolution, 73: 1916-1926

Fulton, T. L., Letts, B., & Shapiro, B. (2012). Multiple losses of flight and recent speciation in steamer ducks. Proceedings of the Royal Society B: Biological Sciences, 279(1737), 2339-2346.

Livezey, B. C., & Humphrey, P. S. (1986). Flightlessness in steamer‐ducks (Anatidae: Tachyeres): its morphological bases and probable evolution. Evolution, 40(3), 540

Costela de Adão ou cromossomo de Eva? As diversas formas de se criar dois sexos distintos

A reprodução sexual surgiu há mais de 1,2 bilhão de anos, sendo quase universal entre os eucariotos. Seu papel principal é misturar o material genético de diferentes indivíduos. A reprodução sexual de muitos organismos multicelulares levou à evolução de gametas de diferentes tamanhos e à evolução de dois sexos distintos. Apesar do resultado da determinação sexual —diferenciação em machos ou fêmeas— ser muito conservada, os caminhos adotados por cada espécie podem ser muito diferentes.

A curiosidade sobre as origens dos diferentes sexos deve ser quase tão antiga quanto a nossa percepção das diferenças morfológicas entre machos e fêmeas. As explicações foram muitas ao longo do tempo. Aristóteles propôs que indivíduos do sexo masculino eram caracterizados pela abundância do elemento fogo, enquanto indivíduos do sexo feminino eram caracterizados pela abundância de água e, portanto, a temperatura determinaria o sexo. A partir disso, também foi proposto que os embriões que se desenvolviam no lado direito do útero, dito o lado mais quente, tornavam-se machos e aqueles que se desenvolviam no lado esquerdo, fêmeas. Passaram-se mais de dois mil anos até que Hermann Henking observasse, em 1891, um cromossomo com comportamento peculiar em um hemíptero (percevejos) do gênero Pyrrhocoris. Henking notou que algumas células continham 12 cromossomos e outras continham 11, o que parecia uma contradição ao conceito da constância do número dos cromossomos para uma dada espécie. O cromossomo, chamado de acessório posteriormente, era diferente. Ele era o único cromossomo não pareado na metáfase da meiose. Durante a anáfase, os cromossomos se dividiam (ou separavam-se), mas isso não acontecia para esse cromossomo, que se movia como uma única unidade para uma das duas novas células. Henkins se referiu ao cromossomo diferente como elemento X (elemento desconhecido), pois ele não sabia classificá-lo e não fez associação deste elemento com a determinação do sexo. Clarence Erwin McClung, Edmund Beecher Wilson e Nettie Maria Stevens foram os primeiros a propor que os cromossomos acessórios determinavam o sexo. Wilson e Stevens descobriram dois diferentes sistemas de determinação cromossômica do sexo, XX/XY e XX/XO. Logo o sistema de aves, borboletas e mariposas, ZZ/ZW, também foi descoberto, assim como sistemas sem nenhuma diferença aparente nos cromossomos. Ainda não se sabia, no entanto, o que tornava aqueles cromossomos especiais. Até a descoberta dos genes de determinação sexual.

Em organismos-modelo, a determinação sexual é iniciada por um gene principal que ativa a cascata de diferenciação em machos ou fêmeas (gene Sry em mamíferos, gene Sxl em drosófila, tra em diversos insetos e xol-1 em Caenorhabditis elegans, por exemplo). São genes que codificam fatores de transcrição que, quando expressos, ativam genes efetores que levam ao desenvolvimento de estruturas de machos ou de fêmeas. Os cromossomos do sexo heterogamético (aquele que possui dois cromossomos diferentes) evoluem a partir de autossomos que são inicialmente idênticos e param de recombinar após adquirir um gene de determinação sexual. Havendo recombinação entre os cromossomos, a seleção pode agir independentemente em cada mutação, mas na falta dela, há uma redução na eficiência da seleção que age no cromossomo inteiro (tema já discutido aqui no Darwinianas). Um efeito colateral comum da recombinação reprimida nos cromossomos Y e W, por exemplo, é a perda da maioria de seus genes. Isso acontece em inúmeros grupos animais, incluindo mamíferos, pássaros, cobras e insetos. Nos casos mais extremos, o Y ou W é totalmente perdido, resultando nos sistemas X0 (como grilos e gafanhotos, por exemplo) e Z0 (algumas mariposas).

Apesar dessas observações em muitos organismos-modelo, fica cada vez mais claro que diversos mecanismos para determinação do sexo evoluíram independentemente (como revisado por Bachtrog e colaboradores). Répteis como crocodilos e tartarugas e alguns peixes têm determinação sexual dependente de temperatura; larvas de um verme do gênero Bonellia só se desenvolvem como machos se tiverem o encontro com uma fêmea; algumas plantas e animais mudam de sexo durante sua vida em resposta a estímulos externos. A evolução desses mecanismos é tão rápida que é possível observar diferentes mecanismos atuando dentro de uma mesma espécie (em sapos e peixes, por exemplo). Na mosca doméstica, a determinação sexual é poligênica. Há um gene determinante do desenvolvimento de machos no cromossomo Y (fator M) e machos, em geral, são XYM e fêmeas são XX.  No entanto, foram observados machos XX em algumas populações. Esses machos carregavam uma cópia do fator M em um dos autossomos (AM).  

Em mamíferos, no entanto, com a observação de uma grande variedade de organismos, o sistema XY parecia ser conservado. Os cromossomos sexuais dos mamíferos evoluíram há mais de 150 milhões de anos a partir de um par autossômico no ancestral comum de mamíferos placentários e marsupiais. O cromossomo Y, por um lado, sofreu uma importante degeneração e menos de 5% dos genes permaneceram no cromossomo. Em roedores, dez genes são geralmente encontrados e apenas cinco genes são comuns a todas as espécies com cromossomos Y sequenciados (incluindo o gene Sry). O cromossomo X, por outro lado, tem mais de 90% de seu conteúdo gênico conservado em mamíferos. O roedor Microtus oregoni é uma rara exceção dentro do grupo. M. oregoni tem dois cromossomos sexuais, X e Y, que não são homólogos aos demais cromossomos sexuais de mamíferos. Curiosamente, número de cromossomos sexuais é diferente entre as células germinativas diplóides e as células somáticas e a distribuição dos cromossomos sexuais entre os tipos de células é invertida em machos e fêmeas: fêmeas têm cromossomos sexuais emparelhados nas células germinativas (2n = 18, XX) e não emparelhados em células somáticas (2n = 17, X0), enquanto os machos têm cromossomos sexuais emparelhados em células somáticas (2n = 18, XY), mas um único cromossomo desemparelhado nas germinativas (2n = 17, Y0). Assim, o macho produz gametas portando um cromossomo Y ou nenhum cromossomo sexual.

Para desvendar os mecanismos subjacentes a esse novo sistema de determinação, pesquisadores sequenciaram e montaram o genoma de M. oregoni. Esse genoma não continha um cromossomo homólogo ao Y de outros mamíferos, mas oito dos 10 genes observados no Y de roedores foram encontrados no cromossomo X montado de M. oregoni. A expressão desses genes era observada tanto em machos como em fêmeas, ao contrário de espécie irmã, Microtus longicaudus, cuja expressão era restrita aos machos. Ou seja, a reorganização do genoma de M. oregoni fez com que genes que estavam restritos aos machos por 150 milhões de anos passassem a ser expressos nas fêmeas!

Eles então fizeram um teste para estimar quantas cópias de cada tipo de cromossomo estavam presentes nos indivíduos. Para isso, quantificaram o número relativo de moléculas sequenciadas (cobertura) derivadas de autossomos e cromossomos sexuais em células somáticas de machos e fêmeas. Se as células somáticas de machos fossem XY e de fêmeas X0, seria esperado observar cromossomos sexuais com metade da cobertura de cromossomos autossômicos (já que as células somáticas possuem duas cópias de cada um deles). Como esperado, a cobertura do X em fêmeas era metade daquela observada para os autossomos, mas isso não foi observado para os machos. Neles, cobertura dos cromossomos sexuais não era diferente da cobertura dos autossomos. Essa foi uma das evidências que levaram à conclusão de que machos não possuíam um X e um Y, mas sim dois cromossomos X, um com herança paterna, XP, e outro com herança materna, XM.

O mecanismo de inativação de um dos cromossomos também foi observado nos machos, guardando muita semelhança com mecanismo de silenciamento do X extra de fêmeas de outros mamíferos. Em M. oregoni, a inativação não é aleatória. Em todos os casos, o cromossomo silenciado era o de origem paterna, XP. A presença de genes derivados de Y em ambos os sexos e a substituição do cromossomo Y ancestral por um segundo cromossomo X em machos de M. oregoni poderiam ser explicadas pelo movimento dos genes do Y para o X, seguido pela perda do cromossomo Y. Foram encontradas evidências de fusão do Y ancestral aos novos cromossomos XP e XM. Um outro resultado surpreendente foi a detecção de várias cópias do gene determinante do sexo maculino, Sry, no XM, com herança materna.

Esses resultados revelam um padrão de transformação de um cromossomo sexual que era anteriormente desconhecido nos mamíferos: M. oregoni perdeu seu cromossomo Y e machos possuem dois cromossomos X com pedaços do Y ancestral, XPXM. Surpreendentemente, genes ancestrais masculinos podem ser acomodados em genomas de fêmeas e indivíduos com cariótipo XM0 possuem cópias do gene determinante do sexo maculino, Sry, e expressão de genes derivados do Y. Esse é um mistério ainda a ser respondido: como esses indivíduos evitam a masculinização e se desenvolvem como fêmeas férteis? É possível que ainda encontremos outros sistemas surpreendentes de determinação sexual na natureza e eles poderão nos ajudar a compreender as mudanças cromossômicas subjacentes às diversas formas de se criar dois sexos distintos.

Tatiana Teixeira Torres (USP)

Para saber mais:

– Ilona Miko (2008) Sex chromosomes and sex determination. Nature Education, 1, 108.

Revisão em inglês sobre a descoberta dos cromossomos sexuais e uma breve descrição de mecanismos cromossômicos de determinação sexual em diversas espécies.

– Laura Hake & Clare O’Connor (2008) Genetic mechanisms of sex determination. Nature Education, 1, 25.

Nessa revisão, também em inglês, o foco está nos mecanismos moleculares de diferenciação sexual, com a descrição dos processos e genes envolvidos no desenvolvimento dos indivíduos dos diferentes sexos.

Crédito da imagem: “O cromossomo Y é pequeno em comparação com o X, mas é necessário para manter os níveis de alguns genes altos o suficiente para que os mamíferos sobrevivam”. ANDREW SYRED/SCIENCE SOURCE

DNA migrante na diversidade e na doença

Além de desbravar novos territórios, os movimentos migratórios humanos trazem consigo uma bagagem muito diversa. Não estamos falando somente de objetos pessoais ou de tradições culturais – as migrações também introduzem variações genéticas pré-existentes, inclusive algumas associadas a doenças. Quais são os impactos dessa introdução de variantes genéticas em populações miscigenadas, como a brasileira? É o que vamos discutir hoje.

A história da humanidade sempre foi marcada pela presença de doenças. Obviamente, quando olhamos para as pandemias de patologias infectocontagiosas, o impacto sobre a sociedade é visível, e seu curso deixa marcas profundas que podem perdurar por séculos. Afinal, milhares ou milhões de mortes são consequências que ficam registradas como uma herança sombria para nos lembrar ao que podemos estar sujeitos. Ao mesmo tempo, a eclosão de catástrofes sanitárias funciona como um motor que empurra as ciências biomédicas no caminho das descobertas sobre os mecanismos responsáveis pelas doenças e das buscas pelos tratamentos. Continue Lendo “DNA migrante na diversidade e na doença”

Nas teias do social

O que falta para sermos mais que a soma da inteligência das partes?

É comum dizermos que agimos de tal ou qual forma por nossa personalidade impulsiva, ou extrovertida, ou controladora, aparentando assim justificar nossas ações. Podemos até avaliar de forma relativamente precisa aspectos de nossa personalidade. Certos indivíduos são sistematicamente mais extrovertidos que outros, e independentemente do tipo de avaliação que utilizemos, vamos sempre encontrar um ranqueamento estável entre indivíduos: um deles sempre em primeiro, outro sempre em segundo, terceiro, e assim sucessivamente, por exemplo, no quesito extroversão. A existência deste ranque estável indica estabilidade no comportamento, indica a personalidade. A personalidade é parte da explicação de nosso comportamento em geral, inclusive, por exemplo, com relação à pandemia: há indivíduos que sistematicamente se isolam em casa, enquanto outros, muitas vezes, escolhem não se isolar. Claro, muitos fatores contribuem para estas decisões, incluindo impulsionamentos em massa em redes sociais patrocinadas e com perfis falsos, mas o ponto aqui é apenas que a personalidade é um desses fatores. De qualquer modo, em um tema assim delicado, é preciso muito cuidado e atenção: o fato de conseguirmos explicar algo não significa que conseguimos justificar esse algo. Aglomerações e festas no meio de uma das maiores pandemias que o mundo já enfrentou são decididamente atitudes irracionais, e injustificáveis.

Será que a personalidade seria também uma explicação para a diferença entre culturas ou países? Digo, será que a taxa de mortalidade nesta pandemia estaria associada à personalidade do grupo como um todo? Será que faria sentido ranquear os países no quesito ousadia, sendo o Japão sistematicamente menos extrovertido que, por exemplo, o Brasil? Para avaliar esta possibilidade, precisamos primeiro separar a ideia da existência de personalidade em grupo da ideia, um tanto distinta, da existência de personalidade de grupo. A personalidade humana e animal é sempre fruto do ambiente social do indivíduo, e desta forma a minha personalidade certamente varia em função do meu grupo de amigos. De certa forma, minha personalidade é sempre ligada ao meu entorno, pois ela existe só neste grupo específico, ela se funda em interações sociais estáveis e estabelecidas. Minha personalidade não se dá jamais no vácuo, mas sempre em um contexto social que a influencia. Indivíduo e grupo estão entrelaçados, e a esta personalidade individual fundada no social podemos chamar personalidade em grupo. Agora, da existência de personalidade em grupo não decorre que o grupo em si tenha uma personalidade, digamos, autônoma em relação à personalidade dos indivíduos que compõem o próprio grupo: personalidade em grupo não resulta necessariamente em personalidade de grupo. Enquanto a personalidade do indivíduo (que vive em grupo) é medida apenas no indivíduo, a personalidade do grupo é medida apenas no grupo. Isso significa que seria possível existir, por exemplo, um grupo tímido (personalidade do grupo) formado por indivíduos relativamente ousados (personalidade dos indivíduos). Como isso seria possível? E como estudar estes distintos níveis de personalidade?

Como ser humano é sempre muito complicado, cientistas passaram a estudar esta questão em animais sociais mais simples, como abelhas, formigas, aranhas. E como eles fazem isso, como estudam personalidade em animais tão distintos de nós? Muito simples (aliás, simples demais). Separa-se a aranha de seu grupo social, espera-se que ela se habitue ao trauma desta manipulação (volte a andar e explorar seu novo ambiente), para então simular em laboratório um evento em que ela estivesse sendo caçada (simula-se o bater de asas de uma ave predadora). A aranha imediatamente se recolhe, formando uma bolinha de pernas coladas ao corpo, camuflada em um canto qualquer. Alguns indivíduos se recuperam rapidamente do “ataque da ave”, e passam a explorar novamente o ambiente, enquanto outros, sistematicamente, são menos ousados, demoram mais para retomar o normal da vida. Assim, medimos a ousadia de cada indivíduo medindo o tempo para se recuperar do ataque, e mostramos que, sim, aranhas, abelhas, formigas, cupins, e qualquer outra espécie que já tenha sido medida, apresentam personalidade.

Mas falávamos de personalidade de grupo … então, como medir a personalidade de uma colmeia? Para isso, precisamos de uma tarefa que seja coletiva, como, por exemplo, a decisão de um formigueiro entre duas fontes alternativas de alimento, uma mais próxima, outra mais distante. Esta decisão não é nunca tomada por um indivíduo: formam-se trilhas simultâneas para as duas fontes de alimento, e a trilha que recrutar mais formigas vence, o que de certa forma reflete uma democracia curiosa, na qual cada indivíduo vota em uma das opções (segue uma das duas trilhas) sem nunca conhecer simultaneamente as duas. Esta democracia às escuras sintetiza o processo decisório social em muitas das escolhas dos insetos sociais. Sabendo disso, os pesquisadores oferecem um problema para um formigueiro (esta escolha entre duas fontes de alimento) e medem quanto tempo demora para a decisão social. Fazem o mesmo para um segundo formigueiro, e um terceiro, e percebem, repetindo muitas vezes o experimento, que um dos formigueiros sempre é o primeiro a decidir, outro é sempre o segundo, e assim por diante: há um ranque estável entre os formigueiros. A partir de experimentos deste tipo, os pesquisadores concluem que há diferenças estáveis entre os formigueiros, no que se refere ao comportamento social. A estas diferenças, eles denominam personalidade social, que foi evidenciada em inúmeras espécies de insetos e aranhas sociais.

Agora vem nossa pergunta: esta personalidade social reflete a personalidade de grupo, a existência de um novo nível de organização acima do indivíduo, ou reflete simplesmente a personalidade dos indivíduos? No primeiro caso, teríamos de fato uma organização social tal que seria a sociedade que controlaria as interações entre os indivíduos, de modo que os indivíduos seriam apenas peões agindo cegamente em um jogo no qual a estratégia global vencedora não estaria no cérebro dos indivíduos, mas sim na organização de suas interações. No segundo caso, a organização das interações seria apenas um subproduto da ação dos cérebros individuais: não haveria uma macro-estrutura que se superporia às decisões dos indivíduos.

O problema é que o resultado dos estudos com personalidade em insetos sociais não nos permite distinguir entre as duas situações acima: os resultados são compatíveis tanto com a existência, quanto com a inexistência de uma macro-estrutura organizando as interações. Assim, temos que ser mais precisos para distinguir a existência de níveis superiores de organização social.

Foi exatamente essa análise precisa e minuciosa das interações sociais que foi publicada recentemente por nosso grupo de pesquisa. Quando analisamos as interações dentro do formigueiro, ou dentro da colmeia, verificamos que em nenhuma das espécies estudadas existe um nível de organização social que autonomamente manipula as decisões dos indivíduos, fazendo-os trabalhar, por assim dizer, por uma causa maior. Formigueiros, cupinzeiros, colmeias, estas estruturas não são super-organismos, ao menos no sentido de terem uma mente social que controla as mentes de seus indivíduos. Elas não apresentam um nível superior (ao do indivíduo) com autonomia para tomar decisões pelo coletivo. Elas constituem, sim, processos emergentes complexos, ou seja, processos cujo resultado global não é previsível a partir apenas do comportamento de suas partes.

Processos cognitivos emergentes certamente aumentam de forma não linear a percepção e inteligência do conjunto. No entanto, esses processos emergentes auto-organizados, por complexos que sejam do ponto de vista dos indivíduos, são simples demais do ponto de vista do funcionamento social. Uma trilha de saúva (um processo emergente) é uma estrutura social auto-organizada, imprevisível do ponto de vista do indivíduo, e que amplia de forma não linear a eficiência do forrageamento (coleta de folhas) ao uniformizar o comportamento dos indivíduos ao redor de uma atividade.

No entanto, do ponto de vista do funcionamento social, uma trilha é uma estrutura simples, e para que haja cognição neste nível social teríamos que ter trilhas inter-comunicantes criando estruturas de retroalimentação entre elas. A escolha entre fontes de alimento, entre duas ou mais trilhas, se dá muitas vezes sem troca de informação entre as trilhas, que são assim quase que independentes umas das outras. Para haver cognição propriamente social teríamos que ter uma teia de trilhas (ou outras atividades sociais auto-organizadas) que formasse uma superestrutura. Uma superestrutura que integrasse informações distintas e conduzisse a um processo decisório social unificado e autônomo (em relação às decisões de cada indivíduo). Sem uma superestrutura informacional, não há um desacoplamento das decisões coletivas em relação às decisões individuais, e assim são efetivamente os indivíduos, e não um coletivo autônomo, que estão no comando. Há personalidade nos indivíduos, mas o coletivo, o coletivo ainda parece mudo … será que, no fundo, não somos em muito semelhantes a essas formigas?

Hilton Japyassú

Para saber mais

Briffa, M., & Weiss, A. (2010). Animal personality. Current Biology, 20(21), R912-R914.

Carere, C., & Locurto, C. (2011). Interaction between animal personality and animal cognition. Current Zoology, 57(4), 491-498.

Japyassú, H. F., Neco, L. C., & Nunes-Neto, N. (2021). Minimal organizational requirements for the ascription of animal personality to social groups. Frontiers in Psychology, 11, 3586.

Webster, M. M., & Ward, A. J. (2011). Personality and social context. Biological reviews, 86(4), 759-773.

Fertilização em animais e plantas: as semelhanças são muito mais do que meras coincidências

Estudo recente revela que plantas e animais utilizam mecanismos semelhantes para garantir que a fertilização ocorra de maneira adequada, dando origem a um zigoto viável.

A reprodução sexuada tem um papel importante na manutenção das linhagens evolutivas da grande maioria dos animais e das plantas. Através da reprodução sexuada, gametas se fundem para a produção de um novo organismo que possui uma mistura do material genético dos pais. Durante a reprodução sexuada, a fusão dos gametas materno e paterno, ou fertilização, é uma etapa essencial para a produção de um zigoto viável, e é controlada, em plantas e animais, por vários mecanismos que aumentam as chances de que esse processo ocorra de forma adequada. Sabemos bastante a respeito dos processos que regulam a fertilização em animais, porém, muitos dos mecanismos envolvidos na fertilização de plantas ainda são desconhecidos. Na grande maioria dos animais, a fertilização resulta na penetração de apenas um gameta masculino (esperma) no gameta feminino (óvulo), fenômeno chamado de monospermia. Alguns grupos animais, incluindo pássaros, répteis e anfíbios, exibem polispermia fisiológica, fenômeno no qual vários gametas masculinos são capazes de penetrar o gameta feminino. No entanto, mesmo durante a polispermia fisiológica, apenas o núcleo de um único gameta masculino é capaz de fundir com o núcleo do óvulo, garantindo assim a reconstituição do genoma da espécie e a formação de um zigoto viável. Continue Lendo “Fertilização em animais e plantas: as semelhanças são muito mais do que meras coincidências”

A origem e evolução do sexo nos eucariontes

A capacidade de realizar sexo é muito comum entre seres vivos. Quando teria surgido, na história da vida na terra? Uma forma de responder essa questão é investigar quais organismos carregam os genes essenciais para o sexo. Tais pesquisas trouxeram surpresas, revelando que mesmo entre organismos que não parecem recorrer ao sexo, a maquinaria genética para esse mecanismo está presente.

Você sabia que o sexo surgiu há mais de 1.2 bilhão de anos e é uma característica que já estava presente no último ancestral de todos os eucariontes (organismos que apresentam células com organelas e núcleo, no qual o DNA fica restrito)? Isso mesmo, o ancestral comum de animais, plantas, fungos, amebas, ciliados, e demais eucariontes, muito provavelmente já era capaz de realizar sexo, e essa capacidade foi herdada pelos diversos grupos de eucariontes viventes que conhecemos hoje. Mais que isso, muitos dos eucariontes que hoje são considerados assexuados são, na verdade, muito provavelmente capazes de realizar sexo, mas isso nunca foi observado por falta de estudos. Mas vamos por partes: neste post vamos entender o que é sexo do ponto de vista evolutivo, para então identificar algumas premissas que nos permitem estudar a origem e evolução desse mecanismo.   

Para começar precisamos definir o que é sexo. Simplificadamente, do ponto de vista evolutivo, sexo é entendido como um ciclo que envolve uma etapa de fusão nuclear (cariogamia) e uma etapa de meiose com recombinação gênica. É por meio desse ciclo que diversos grupos de eucariontes apresentam alternância de ploidia (número de cromossomos presentes em uma célula); enquanto a fusão nuclear leva a um aumento de ploidia a meiose gera uma diminuição (Figura 1). Vale ressaltar, que nesse contexto, sexo não é sinônimo de reprodução, já que em muitos eucariontes sexo não está diretamente vinculado a geração de um descendente; por exemplo, ciliados como o Paramecium aurelium realizam sexo em uma fase do ciclo de vida, enquanto se reproduzem por meio de divisão (fissão) celular em uma outra fase. A partir dessa definição de sexo podemos estabelecer algumas premissas necessárias para os estudos evolutivos.


Figura 1. Esquema ilustrativo da definição de sexo no contexto dos estudos evolutivos. Sexo é um mecanismo clíclico que envolve etapas de fusão nuclear e meiose. Para visualizar essa definição de sexo podemos considerar o exemplo da espécie humana. Nos humanos, sexo é a fusão dos núcleos de duas células gaméticas (óvulos e espermatozoides) haploides de 23 cromossomos (23C) que dá origem a um organismo com células somáticas diploides com 46 cromossomos (46C). Por sua vez, as células gaméticas haplóides (23C) são geradas a partir da diminuição de ploidia de células somáticas diploides (46C) por meio da meiose. Vale ressaltar que a recombinação gênica é um evento intrínseco à meiose, já que uma das etapas da meiose envolve o pareamento e permutação gênica crossing-over) entre cromossomos homólogos e outra envolve a reorganização de cromossomos maternos e paternos em uma nova combinação. Tal recombinação gênica contribui com o aumento da variabilidade genética, que é uma das consequências mais notórias do sexo.    

Duas premissas são centrais para estudar a origem e evolução do sexo: (i) A origem evolutiva do sexo em uma linhagem de organismos está vinculada à origem de aparatos moleculares (genes e proteínas) envolvidos com a cariogamia e a meiose; (ii) Os organismos sexuados devem ter em seus genomas genes que compõem aparatos moleculares envolvidos com a cariogamia e meiose. Dessas premissas deriva a seguinte constatação: a presença de aparatos moleculares específicos da cariogamia e meiose no genoma de um grupo de organismos sugere que esse grupo é capaz de realizar sexo. Nessa perspectiva, organismos assexuados não devem apresentar aparatos específicos da cariogamia e meiose. Logo, fica evidente a relevância de estudos comparativos para identificar e descrever os genes envolvidos na meiose e cariogamia dos diversos eucariontes sexuados.

Décadas de estudos com diversos eucariontes identificaram os genes que codificam as proteínas que compõem o aparato molecular necessário para o sexo (cariogamia + meiose). Desses estudos, estabeleceu-se uma lista de genes que são específicos para meiose e que são denominados de ‘kit de ferramentas da meiose’ (do inglês meiosis toolkit). Interessantemente, os genes do ‘kit de ferramentas da meiose’ são compartilhados por amebas, fungos, animais, plantas, ciliados, e vários outros grupos de eucariontes. Por conta disso, infere-se que o último ancestral comum de todos os eucariontes (o LECA, do inglês Last Eukaryotic Common Ancestor) já apresentava o ‘kit de ferramentas da meiose’ (Figura 2). Mais que isso, é do LECA que os diversos grupos viventes de eucariontes herdaram (e conservaram) o aparato molecular envolvido na meiose, assim como a capacidade de realizar sexo. Por sua vez, o aparato molecular envolvido na meiose com recombinação gênica evoluiu de um aparato ancestral que, em Archaeas, são responsáveis em reparar danos no DNA; a partir de genes ancestrais relacionados com o reparo de DNA, duplicações e diversificação gênica deram origem aos genes que compõem o ‘kit de ferramentas da meiose’.

Figura 2. Árvore simplificada da relação de parentesco entre o grupo dos eucariontes (laranja) e demais domínios da vida (Archaea e Bactéria). Atualmente, os eucariontes são classificados em vários grandes grupos, como as Archaeplastida, que inclui as plantas e diversas algas, Obazoa, que inclui os fungos, animais e diversos representantes unicelulares, e Amoebozoa, que inclui diversos grupos de organismos amebóides. Todos os grandes grupos de eucariontes apresentam linhagens de organismos que têm em seus genomas os genes do ‘kit de ferramentas da meiose’ (KFM) que estão envolvidos com o sexo. A partir disso, é possível inferir que o último ancestral comum de todos os eucariontes (LECA) apresentava os genes do ‘kit de ferramentas da meiose’ e provavelmente já era sexuado. Inferências atuais baseadas em análises de relógio molecular sugerem que o LECA viveu entre 1.2 e 1.9 bilhão de anos atrás, logo a origem dos genes que compõem o ‘kit de ferramentas da meiose’, assim como o sexo, ocorreu em um período anterior a esse. Os traços coloridos na figura representam genes que compõem o ‘kit de ferramentas da meiose’.

Disso tudo podemos tirar alguns aprendizados gerais: (i) No contexto evolutivo, sexo é definido como um ciclo composto por cariogamia e meiose; (ii) Infere-se que o último ancestral de todos os eucariontes (o LECA) já era sexuado; (iii) Dado um LECA sexuado, todos os grupos de eucariontes potencialmente herdaram o aparato molecular necessário para a realização de sexo e devem ser considerados sexuados até que se prove o contrário (Hofstatter e Lahr, 2019); (iv) Ser assexuado é uma característica secundária (derivada) de grupos de eucariontes que perderam a capacidade ancestral de realizar sexo. Corroborando essas conclusões, tem sido demonstrado que vários grupos de microrganismos eucariontes, tradicionalmente descritos como assexuados, apresentam em seus genomas o aparato molecular necessário para a meiose e cariogamia e são capazes de realizar sexo em alguma fase do seu ciclo de vida, o que não havia sido observado anteriormente por falta de estudos. Portanto, dado que “ausência de evidência não é evidência de ausência”, e que na perspectiva evolutiva o sexo é uma característica ancestral que foi conservada por diversas linhagens de eucariontes, podemos esperar que muitos outros organismos “assexuados” pouco estudados sejam futuramente demonstrados capazes de realizar sexo, sendo o sexo uma regra, e não uma exceção, na história evolutiva dos eucariontes.

Alfredo L. Porfírio de Sousa (USP)

Para saber mais:

 Ficou curioso em saber quais são os tais genes do ‘kit de ferramentas da meiose’ dos eucariontes e o contexto no qual foram relacionados a evolução do sexo? Indico uma olhadinha no artigo “Using a meiosis detection toolkit to investigate ancient asexual ‘scandals’ and the evolution of sex” (Schurko e John, 2008). Se quiser mais detalhes quanto ao ancestral de todos os eucariontes (o LECA) ser sexuado e o sexo ser bem mais comum em eucariontes do que imaginado antes, indico dar uma espiada nos artigos “Sex is a ubiquitous, ancient, and inherent attribute of eukaryotic life” (Speijer e colaboradores, 2015), “All Eukaryotes Are Sexual, unless Proven Otherwise” (Hofstatter e Lahr, 2019) e “The Sexual Ancestor of all Eukaryotes: A Defense of the ‘Meiosis Toolkit’” (Hofstatter e colaboradores, 2020).

 

Hofstatter, P. G., & Lahr, D. J. (2019). All Eukaryotes Are Sexual, unless Proven Otherwise: Many So‐Called Asexuals Present Meiotic Machinery and Might Be Able to Have Sex. BioEssays, 41(6), 1800246.

Schurko, A. M., & Logsdon Jr, J. M. (2008). Using a meiosis detection toolkit to investigate ancient asexual “scandals” and the evolution of sex. Bioessays, 30(6), 579-589.

Hofstatter, P. G., Ribeiro, G. M., Porfírio‐Sousa, A. L., & Lahr, D. J. (2020). The Sexual Ancestor of all Eukaryotes: A Defense of the “Meiosis Toolkit” A Rigorous Survey Supports the Obligate Link between Meiosis Machinery and Sexual Recombination. BioEssays, 42(9), 2000037.

Speijer, D., Lukeš, J., & Eliáš, M. (2015). Sex is a ubiquitous, ancient, and inherent attribute of eukaryotic life. Proceedings of the National Academy of Sciences, 112(29), 8827-8834.

Foto de capa: https://www.eurekalert.org/multimedia/pub/256910.php

Com a evolução não se brinca

Os vírus, assim como outros seres vivos, evoluem. Nesse processo, a seleção natural pode torná-los mais infecciosos, mais resistentes a drogas, ou mais capazes de burlar as vacinas. As ações que nós tomamos podem influenciar a chance de o processo evolutivo tomar esse rumo indesejável.

O material genético do coronavírus que hoje circula pelo mundo causando a COVID tem várias diferenças em relação àquele que começou a se espalhar no final de 2019. Essa transformação resulta de mutações, que são erros que ocorrem quando o material genético é copiado. Algumas das mutações que surgiram se tornaram comuns. As linhagens do coronavírus, como a P.1, que se torna cada vez mais comum no Brasil, são definidas pela combinação de mutações que acumularam. A mudança na composição genética de uma espécie ao longo do tempo é uma forma de definir a evolução. Assim como outros seres vivos, o vírus evolui.

Continue Lendo “Com a evolução não se brinca”