As cobras também cospem!

Estudo publicado essa semana na revista Science sugere que a capacidade de cuspir veneno, criando assim um projétil de defesa bastante efetivo, evoluiu por convergência em três grupos distintos de cobras cuspidoras e que essa evolução parece estar intrinsecamente ligada à emergência dos hominíneos na África e Ásia.

É muito tentador pensar na natureza como um lugar idílico, um paraíso onde as plantas e os animais vivem em constante harmonia. Sem dúvidas, a beleza do mundo natural é encantadora e não pretendo aqui argumentar o contrário. Mas, desde Darwin, a ideia de que os organismos vivos estão em constante luta pela sobrevivência, na qual apenas os mais aptos sobreviverão, ou seja, aqueles mais capazes de obter recursos para sua manutenção, se tornou um conceito central no pensamento biológico, e essa noção está na base de um dos mais importantes mecanismos evolutivos, a seleção natural. E quanto mais estudamos o mundo natural, mais nos damos conta de que muito do que achamos fascinante evoluiu em contextos de predação, defesa ou competição. E um desses fenômenos é a evolução da peçonha.

A utilização de peçonha para defesa, competição ou predação é usualmente associada a insetos (como abelhas e vespas), a aracnídeos (como aranhas e escorpiões), ou a répteis (como as cobras). Diferentemente dos animais venenosos, que apenas produzem ou acumulam toxinas, animais peçonhentos possuem também um mecanismo ativo de liberação ou inoculação do veneno. Com poucas exceções, como as aves, exemplos de animais peçonhentos são encontrados em praticamente todos os grupos animais, até mesmo dentre os mamíferos (consulte aqui o Guia de Bolso dos animais peçonhentos do Brasil). Talvez o exemplo de mamífero peçonhento mais conhecido seja o ornitorrinco, espécie na qual os machos possuem, nas patas posteriores, esporões com veneno que são utilizados usualmente para defesa de território ou competição por fêmeas durante o período reprodutivo. Outro exemplo curioso entre os mamíferos é o dos musaranhos. Capazes de transferir o veneno de várias maneiras, os musaranhos usualmente utilizam seu veneno para imobilizar pequenas presas e preservá-las frescas por mais tempo. Já dentre os primatas, o Nycticebus é o único gênero venenoso conhecido até hoje. Nesses primatas, o veneno é produzido por uma glândula no braço e é ativado quando misturado à saliva. Esses animais lambem suas glândulas de veneno, tornando sua mordida venenosa.

Só no Brasil são notificados em torno de 100 mil acidentes com animais peçonhentos por ano, dentre os quais as cobras, aranhas e escorpiões são os principais envolvidos.  Segundo a Organização Mundial de Saúde (OMS), anualmente em torno de 2 milhões de pessoas são envenenadas por picadas de cobras, e dentre elas mais de 100.000 morrem por consequência. Entre os sobreviventes, aproximadamente 300.000 pessoas sofrem amputações ou desenvolvem deficiência física permanente como resultado de acidentes ofídicos. Envenenamento por picada de cobra é considerado uma doença negligenciada, como tantas outras que afetam primariamente as regiões tropicais do globo. Mas, ao contrário de outras doenças sérias, o tratamento de pacientes com soro antiofídico é altamente eficaz e capaz de prevenir morte ou sequelas mais graves. 

Em cobras, a utilização de veneno está primariamente ligada à predação, e a composição química desses venenos varia significativamente não apenas entre as diferentes espécies, mas também em populações geograficamente distintas da mesma espécie. Essas diferenças químicas resultam de diversos mecanismos, muitos dos quais estão relacionados a modificações nos padrões de expressão gênica nas glândulas de veneno ou em modificações nas proteínas do veneno em si, e não necessariamente a diferenças nas sequências dos genes que codificam para essas proteínas tóxicas. Desde 1996, a explicação mais aceita para as diferenças na composição dos venenos de populações geograficamente distintas de cobras da mesma espécie é a dieta. E essa explicação, apoiada por muita evidência empírica, faz sentido: as cobras utilizam o veneno primariamente para predação, imobilizando e digerindo a presa. E a população de presas varia na sua susceptibilidade ao veneno em diferentes regiões. Isso sugere que a variação geográfica da composição do veneno reflete a seleção natural de cobras mais eficientes em se alimentar das presas locais.

Mas, enquanto a maioria das cobras utiliza veneno para predação, três grupos de cobras, chamadas de cobras cuspidoras, são capazes de utilizar o veneno como um projétil de defesa. E um estudo publicado essa semana na revista Science revelou os mecanismos evolutivos que explicam a repetida evolução desse comportamento nesses grupos aparentados de cobras, as Elapidae. Curiosamente, esse comportamento evoluiu de maneira independente nas cobras cuspidoras africanas (Naja: subgênero Afronaja), nas cobras cuspidoras asiáticas (Naja: subgênero Naja) e nas cobras cuspidoras da espécie Hemachatus haemachatus. O comportamento de cuspir o veneno parece não ter papel na captura de presa, mas sim na defesa da cobra contra predadores. Essas cobras são capazes de projetar o seu veneno a uma distância de até 2.5 metros e buscam atingir o olho do agressor. O veneno dessas cobras é capaz de causar intensa dor ocular, inflamação e até cegueira, e parece bioquimicamente distinto do veneno de outras Elapidae.

Os resultados dos métodos de filogenética molecular e calibração com fósseis sugerem que o comportamento de cuspir se originou na linhagem africana em torno de 6,7-10,7 milhões de anos atrás, enquanto na linhagem asiática o comportamento de cuspir se originou em torno de 2,5-4,2 milhões de anos atrás (Figura 1a). Os pesquisadores não foram capazes de determinar com precisão a origem desse comportamento no terceiro grupo. Por meio de transcriptômica e proteômica das glândulas de veneno, os pesquisadores caracterizaram as proteínas presentes no veneno de cada um dos grupos de cobras cuspidoras, assim como de espécies de cobras não-cuspidoras. Curiosamente, a composição do veneno de todas as cobras estudadas é dominada por toxinas do grupo 3FTX, enquanto em muitas das espécies estudadas as fosfolipases A2 são o segundo grupo de proteínas em abundância. Apesar das similaridades entre os venenos, a composição dos venenos das cobras cuspidoras é distinta não apenas das cobras não-cuspidoras, mas também entre si (Figura 1b).

Figura 1: Evolução do comportamento de cuspir nas Elapidae. (A) Evolução independente do comportamento de cuspir nos três grupos de cobras cuspidoras (setas vermelhas) e a datação desses eventos nos três grupos. (B) Comparação da composição dos venenos de várias espécies cuspidoras e não cuspidoras de elapideas. A composição dos venenos das cobras cuspidoras diferencia-se não apenas das cobras não-cuspidoras, mas também entre si, com exceção de uma única espécie de cobra cuspidora, a Naja philippinensis (*), cujo veneno é puramente neurotóxico. [Fonte: modificado de Kazandjian e colaboradores (2021), Science]

O veneno das cobras cuspidoras é abundante em um tipo particular de proteína 3FTX com efeito citotóxico, um dos principais componentes ativos desses venenos, apesar de a ação isolada desse componente do veneno ser incapaz de recapitular o efeito citotóxico do veneno como um todo, sugerindo assim uma ação sinergética entre componentes distintos. Para entender em maior detalhe a função dos diferentes componentes dos venenos de cobras cuspidoras, e da sua capacidade de causar dor intensa, os pesquisadores realizaram testes de ativação de neurônios sensoriais com as diferentes frações do veneno. Os resultados apontam para a ação sinérgica entre o componente citotóxico e as fosfolipase A2. Na presença dessas fosfolipases, o efeito citotóxico dos 3FTX é significativamente amplificado. E, ao estudar a fosfolipase A2 no veneno das elapideas, os pesquisadores descobriram que fosfolipase A2  é significativamente mais abundante nos venenos das cobras cuspidoras quando comparado ao das cobras não-cuspidoras. Além disso, as fosfolipase A2 de cobras cuspidoras são, em geral, mais ativas do que aquelas das cobras não-cuspidoras. E, curiosamente, apesar das semelhanças funcionais entre as fosfolipase A2 das cobras cuspidoras, essas proteínas apresentam claras diferenças entre os três grupos de cobras cuspidoras.

É possível também que o ato de elevar o corpo acima do chão, associado à expansão lateral do corpo, tão comumente associado às imagens de najas (Figura 2), tenha sido uma etapa importante, ou um comportamento precursor, na evolução do comportamento de cuspir. Assim, a semelhança no comportamento, na morfologia, e até mesmo na similaridade entre as propriedades funcionais dos venenos das cobras cuspidoras é mais um exemplo de convergência evolutiva.

Figura 2Naja naja exibindo comportamento conhecido como ‘hooding’, no qual a cobra levanta o corpo do chão e expande lateralmente o corpo. [Fonte: Pavan Kumar N, WikipediaCC BY-SA 3.0]

Mas a razão pela qual a habilidade de cuspir veneno evoluiu independentemente nesses três grupos de cobras, ao invés da injeção  do veneno através da mordida, como acontece com a maioria das outras espécies de cobras peçonhentas, ainda não é completamente compreendida. No entanto, os autores propõem uma hipótese fascinante para explicar esse fenômeno. A evolução das cobras cuspidoras africanas ocorreu pouco depois da divergência dos hominínios da linhagem dos bonobos e chimpanzés, o que coincide com a emergência do bipedismo, o crescimento do cérebro, o uso de ferramentas e a ocupação das savanas. De forma semelhante, a evolução desse comportamento no grupo de cobras cuspidoras asiáticas coincide com a chegada do Homo erectus na Ásia. Assim, a evolução independente do comportamento de cuspir nesses três grupos de cobras pode ser mais um dos legados de Lucy.

Ao longo dos últimos 75 milhões de anos, a evolução dos primatas, principalmente sua neurobiologia e seu comportamento, parece ter sido influenciada pela evolução das cobras, e vice-versa. E a luta pela existência imposta pela evolução dos hominínios tanto na África como na Ásia pode ter sido a principal força motriz da evolução desse comportamento nas cobras cuspidoras. E, quem diria que cuspir seria um comportamento favorecido pela seleção natural e tão arraigado na história dos nossos ancestrais!

Ana Almeida

California State University, East bay

Para saber mais:

Ferraz CR. Et al. 2019. Multifunctional Toxins in Snake Venoms and Therapeutic Implications: From Pain to Hemorrhage and Necrosis. Frontiers in Ecology and Evolution. https://doi.org/10.3389/fevo.2019.00218

Headland TH, Greene HW. 2011. Hunter-gatherers and other primates as prey, predators, and competitors of snakes. PNAS 108(52): E1470-E1474.

Stayton C.T. 2015. What does convergent evolution mean? The interpretation of convergence and its implications in the search for limits to evolution. Interface Focus 5: 20150039. http://dx.doi.org/10.1098/rsfs.2015.0039.

Ward-Smith H, Arbuckle K, Naude A, Wüster W. 2020. Fangs for the Memories? A Survey of Pain in Snakebite Patients Does Not Support a Strong Role for Defense in the Evolution of Snake Venom Composition. Toxins 12(3), 201; https://doi.org/10.3390/toxins12030201

Westhoff G, Tzschätzsch K, Bleckmann H. 2005. Spitting behaviour of two species of spitting cobras. Journal of Comparative Physiology A 191: 873–881.

Os disfarces de um estranho no ninho

Aves que colocam seus ovos em ninhos de outras espécies mimetizam os filhotes da espécie hospedeira.

Mamíferos e aves se assemelham na capacidade de produzir energia térmica para manter a temperatura corporal constante, mas diferem no modo reprodutivo. Enquanto os embriões da maioria dos mamíferos se desenvolvem dentro do útero ou de marsúpios, todas as aves colocam ovos.  Para que os embriões recebam o calor necessário para seu desenvolvimento, as aves incubam seus ovos em contato com a pele. Isso implica construir ninhos, passar vários dias sentados sobre os ovos e longos períodos em jejum. E a tarefa não termina depois da eclosão, pois filhotes de muitas espécies necessitam receber calor e alimentos durante semanas até se tornarem independentes.

Aproximadamente 1% das espécies de aves evitam todo esse trabalho. Elas colocam seus ovos nos ninhos de outras espécies, que incubam e alimentam filhotes que não são seus. Esse comportamento, chamado de parasitismo de ninhada, está presente em quatro grupos e evoluiu ao menos seis vezes. A marreca-de cabeça-preta (Heteronetta atricapilla), presente no sul do Brasil, coloca seus ovos em ninhos construídos próximos a lagoas por outras espécies de patos, gaivotas, frangos-d’água e garças. Como todos os patos, ela é uma espécie precocial: seus filhotes são capazes de caminhar, nadar e se alimentar sozinhos logo depois de nascerem. Portanto, o cuidado parental das espécies parasitadas pela marreca-de-cabeça-preta termina com a eclosão dos filhotes. Os estranhos deixam o ninho invadido logo depois de nascerem e não são alimentados pelos pais adotivos (vídeo 1).

Os cucos e alguns dos seus parentes na América do Sul (sacis e peixes-fritos) recebem mais que a incubação dos seus hospedeiros. Eles são altriciais e parasitam ninhos de outras espécies altriciais, especialmente de passarinhos. Filhotes altriciais nascem sem penas, com olhos fechados e permanecem no ninho. Portanto, os filhotes de cucos são cuidados durante semanas pelos pais adotivos até que possam voar e se alimentar sozinhos. Os filhotes de algumas espécies de cucos eclodem antes que os filhotes do hospedeiro e, ainda com olhos fechados, empurram os outros ovos para fora do ninho, recebendo sozinhos o cuidado dos pais hospedeiros (vídeo 1).

Vídeo 1

Os indicadores (Família Indicatoridae), parentes dos tucanos e pica-paus, presentes na África e Ásia, e famosos por seu comportamento cooperativo com mamíferos para obter mel, colocam seus ovos em ninhos de espécies altriciais construídos em cavidades de árvores ou barrancos. Os filhotes de indicadores nascem com um dente de queratina na ponta do bico, que usam para romper os ovos ou matar os filhotes da espécie parasitada e, assim como muitos cucos, não dividem o ninho com os filhotes da espécie hospedeira.

O último grupo com espécies parasitas são os Passeriformes. Aqui surge outro nível de complexidade, pois essas espécies aprendem de seus pais o canto que usam em suas relações sociais e reprodutivas. Na maioria dos passeriformes, o macho canta para cortejar a fêmea, que tem preferência pelo canto que aprendeu no ninho. O chupim e outras quatro espécies do gênero Molothrus (Icteridae) parasitam os ninhos de dezenas de espécies de aves no continente americano. Na primavera é comum ver tico-ticos alimentando filhotes de chupim nas cidades e nos campos do Brasil (vídeo 2). No entanto, por razões que não são ainda compreendidas, eles não aprendem o canto dos pais adotivos.

Video 2

Por último, um outro grupo de Passeriformes conhecidos como viúvas ou indigobirds (família Viduidae), formado por 20 espécies endêmicas do continente africano, parasitam espécies da família Estrildidae. A maioria das viúvas é fiel a uma única espécie hospedeiro e, ao contrário dos chupins, aprendem o canto da espécie hospedeira. Quando adultas, as viúvas fêmeas só se reproduzem com machos que imitam o canto da espécie hospedeira, gerando um isolamento reprodutivo. Por exemplo, Vidua macroura parasita ninhos de  bico-de-lacre (Estrilda astrild, introduzido no Brasil no século XIX) e as fêmeas adultas de V. macroura escolhem machos que reproduzem o canto do bico-de-lacre. Essa conduta resulta em um mecanismo de especiação simpátrica, iniciado cada vez que uma espécie de viúva acidentalmente coloca o ovo no ninho de uma espécie de hospedeiro diferente, pois os filhotes aprenderão o canto da nova espécie e, quando adultos, machos e fêmeas terão predileção por indivíduos que produzem o novo canto.

Os filhotes de viúva não matam seus companheiros de ninhos e dividem a atenção dos pais adotivos com os filhotes originais. Passarinhos reconhecem suas crias e as alimentam orientados por desenhos na boca que variam em forma e cor, às vezes lembrando flores. Também se orientam por vocalizações e movimentos estereotipados para pedir comida, um comportamento chamado de súplica ou begging, como os chupins no vídeo 2.  Um estudo publicado na edição de novembro da revista Evolution mostrou que os filhotes de viúvas mimetizam essas características dos filhotes dos seus hospedeiros (figura 1).

Aves que colocam seus ovos em ninhos de outras espécies mimetizam os filhotes da espécie hospedeira.
Figura 1: Filhotes de espécies de parasitas mimetizam a morfologia e o comportamento de espécies hospedeiras.

O estudo propõe que, depois de uma fase de isolamento reprodutivo comportamental, ocorre a seleção de morfologias e comportamentos miméticos. Os pais hospedeiros alimentam mais aqueles invasores que se parecem com suas próprias crias, resultando, depois de várias gerações, em filhotes quase idênticos.

Todas as espécies de viúvas fiéis aos seus hospedeiros se originaram há menos de um milhão de anos em uma radiação evolutiva que mostra como comportamento, cultura e seleção podem atuar combinados em processos evolutivos: as variações comportamentais na escolha da espécie hospedeira leva à adoção de uma nova cultura vocal que é seguida da seleção de morfologias miméticas.

Joao Francisco Botelho (PUC Chile)

Para Saber Mais:

Jamie, G.A., Van Belleghem, S.M., Hogan, B.G., Hamama, S., Moya, C., Troscianko, J., Stoddard, M.C., Kilner, R.M. and Spottiswoode, C.N. (2020), Multimodal mimicry of hosts in a radiation of parasitic finches*. Evolution, 74: 2526-2538.

Sorenson MD, Sefc KM, Payne RB. Speciation by host switch in brood parasitic indigobirds. Nature. 2003;424(6951):928-31.

Como identificar a ação da seleção natural

É difícil enxergar seleção natural ocorrendo, pois a escala de tempo de nossa observação é curta em relação aos seus efeitos. Entretanto, é possível usar métodos estatísticos para identificar sua ação no passado. Numa conversa com Diogo Meyer, o biólogo Carlos Schrago, da UFRJ, fala sobre abordagens que permitem testar a hipótese de que a seleção natural atuou sobre sequências de DNA.

Numa entrevista anterior, Carlos Schrago conversou sobre a teoria neutra, segundo a qual a maior parte da mudança evolutiva é consequência da deriva genética, e não de mudanças movidas pela seleção natural.

Nesta continuação, o assunto recai sobre a possibilidade de identificar instâncias em que a seleção natural de fato operou. Schargo argumenta que a teoria neutra, mesmo que em grande medida refutada pela comunidade científica, é valiosa como um “modelo nulo” para testes de seleção. A ideia é que a teoria neutra nos diz o que esperar na ausência da seleção, e, portanto, serve de base para testes que permitem identificar as instâncias em que a seleção está presente. 

Originalmente gravada para um curso de biologia evolutiva na Universidade de São Paulo, a entrevista discute temas amplos sobre testes de hipótese, o uso de simulações computacionais, e o papel de abordagens teóricas e de análise de dados em projetos

Diogo Meyer (USP)

A evolução é “só uma teoria”?

Biólogos estão acostumados a ter que lidar com um argumento frequentemente invocado para desqualificar a teoria evolutiva: a de que a evolução é “só uma teoria”. Esse é um bordão em diversos textos anti-evolucionistas.

Implícita nessa forma de criticar o conhecimento sobre a evolução está a ideia de que uma “teoria” de algum modo se distingue de um “fato”, por ser mais incerta e conjectural.

No vídeo que compartilhamos hoje, Charbel Niño El-Hani conversa com Diogo Meyer sobre o que está embutido na tentativa de criticar a evolução afirmando que ela é “apenas uma teoria”. Para Charbel, é fundamental investir para que estudantes tenham uma compreensão de como o conhecimento científico é produzido, e da importância central de teorias no processo de explicar o mundo através da ciência. Compreendendo como o conhecimento científico é construído, ficará claro que descrevê-lo como construído com base em “teorias” não o desqualifica.

Mais do que isso, entender como o conhecimento científico é produzido não só ilumina seu potencial de responder questões complexas – através da elaboração de teorias -, como também serve para mostrar os limites do conhecimento científico, e o fato de que a ciência convive com outras visões de mundo, de utilidade diferente e de inserção em diferentes domínios das atividades humanas.

A conversa chama a atenção para importância de investir na formação de jovens cientistas, buscando equilibrar a grande ênfase dada em ensinar extensos conteúdos, com a muito menos explorada via de ensinar como o próprio conhecimento científico é produzido.

Aproveitadores pré-históricos

A pandemia da covid-19 nos mostrou, da pior forma possível, o impacto dos parasitas em diferentes aspectos na nossa sociedade. Há registros históricos de pandemias e epidemias que afetaram o curso da humanidade (praga de Justiniano, peste bubônica, gripe espanhola), mas os parasitas não estão restritos à nossa espécie e ao nosso tempo.

O hábito de parasitismo é universal. A grande maioria das espécies é parasitada pelo menos em algum estágio de sua vida. Devido a sua abundância em praticamente todos os ecossistemas e seus efeitos adversos sobre o hospedeiro, o parasitismo está entre os principais fatores para explicar a evolução e a ecologia de seus hospedeiros. Por isso, pesquisadores têm interesse em estudar a evolução de parasitas e de seus hospedeiros, e também em buscar formas de manejo e redução dos seus impactos. Embora as espécies parasitas sejam comuns nos ecossistemas modernos, sabemos pouco sobre o parasitismo no passado distante, particularmente sobre quando o hábito surgiu.

Normalmente, os parasitas não se tornam fósseis, pois seus corpos costumam ser pequenos e macios. Por isso, a maioria dos estudos sobre a evolução de parasitas é baseada em filogenias de espécies existentes, que foram construídas com base em dados morfológicos e moleculares. Apesar de muito úteis para inferir processos que atuaram na evolução dessas espécies, esses estudos dão pouco subsídios para entender as interações parasita-hospedeiro. Assim, os raros parasitas fósseis encontrados são bastante celebrados, como é o caso dos fósseis descritos em dois artigos recentes.

Num artigo publicado há pouco mais de uma semana, um grupo de pesquisadores brasileiros da Universidade Estadual de Campinas, Universidade Federal do Rio Grande do Norte e Universidade Federal de São Carlos fazem o primeiro registro de parasitas fósseis preservados no osso de um dinossauro titanossauro. Os cientistas analisaram um fragmento da fíbula do titanossauro encontrado no noroeste do estado de São Paulo. O dinossauro habitava a região há aproximadamente 80 milhões de anos, durante o Cretáceo. Eles notaram que, diferentemente de outros fósseis, o osso apresentava várias lesões que se apresentavam como protuberâncias esponjosas, o que poderia ser uma manifestação de alguma doença, como um câncer ósseo, por exemplo (Fig. 1A). O osso foi analisado por tomografia computadorizada, o que permitiu o diagnóstico da doença: osteomielite aguda. Foi observado também que as lesões esponjosas estavam na parte mais interna do osso, de onde se estendiam até a superfície (Fig. 1B). O próximo passo para entender as causas e a progressão da doença foi a análise histológica do osso, ou seja, de seus tecidos. A observação das lâminas permitiu estimar a idade do animal ao ser infectado e ao morrer, mas também, fortuitamente, revelou a presença de parasitas fossilizados nos canais vasculares do osso (Fig. 1C). Essa foi a primeira observação já descrita de um parasita sanguíneo preservado em ossos de um dinossauro. Os parasitas observados têm tamanho e comportamento de protozoários pré-históricos já conhecidos como Paleoleishmania da família Trypanosomatidae, mas possuem um tamanho bem maior. A identificação da espécie parasita, portanto, ainda depende de análises adicionais.

Figura 1. Fragmento de osso do titanossauro apresentando protuberâncias esponjosas. A. Detalhe de uma das lesões observadas no osso. B. Resultado da tomografia do osso, mostrando as regiões mais densas do osso em azul e as regiões com menores densidades em verde, como a medula (M) e o as lesões no córtex (Pr, CL, PML). C. Parasitas fossilizados observados na medula óssea (cada indivíduo preservado está indicado por uma seta vermelha). Reproduzido de Aureliano e colaboradores, 2020.

O registro mais antigo de interação parasita-hospedeiro também foi publicado neste ano. O registro observado foi provavelmente de um tipo particular de interação, o cleptoparasitismo, quando uma espécie usurpa recursos de espécies bem-sucedidas na obtenção de recursos alimentares em vez de encontrar comida por conta própria. O hábito não é raro nas espécies atuais. Por exemplo, aranhas do gênero Argyrodes estudadas pelo Hilton F. Japyassú, um dos autores do blog, roubam as presas das teias de outras aranhas, em geral pequenos insetos. Insetos da família Panorpidae também se aproveitam do esforço das aranhas, roubando suas presas. Cientistas chineses apresentaram o que seria a mais antiga interação entre duas espécies, mostrando que o cleptoparasitismo pode ter surgido há mais de 500 milhões de anos.

O grupo de pesquisadores encontrou um leito fóssil de braquiópodes –animais com aparência similar a moluscos bivalves– em Yunnan, China, datados em 512 milhões de anos atrás. Milhares de fósseis de braquiópodes, batizados de Neobolus wulongqingensis, aparecem agrupados sobre sedimentos antes cobertos pelo mar. Centenas deles tinham estruturas em forma de tubo incrustadas na superfície externa de suas conchas (Fig. 2A). Essas estruturas tubulares apareciam somente junto às conchas dos braquiópodes, nunca livres ou associados a outros fósseis. Essa observação levou à hipótese de que o organismo que habitava o tubo precisava da associação íntima com braquiópode para sobreviver. Os braquiópodes eram, provavelmente, organismos filtradores e Zhang e seus colaboradores se perguntaram se os organismos incrustados poderiam ter roubando o alimento na borda da concha, antes que o braquiópode pudesse acessá-la. Para testar essa hipótese, o grupo de cientistas comparou a biomassa dos braquiópodes que possuíam tubos incrustados (205 indivíduos) com a biomassa de indivíduos sem os tubos (224 indivíduos). Os braquiópodes incrustados com tubos eram significativamente menores: a presença dos tubos significou uma redução de 26,08% da biomassa. Além disso, os tubos encontrados possuíam aberturas orientadas exclusivamente para a extremidade anterior (via de alimentação) dos braquiópodes hospedeiros (Fig. 2B), uma indicação de que os organismos que viviam nos tubos não utilizavam o braquiópode unicamente como substrato rígido para construir as estruturas. A idade desses parasitas fósseis coincide com a Explosão Cambriana, período reconhecido pela rápida mudança diversificação biológica. Talvez a interação íntima entre as espécies e o hábito de parasitismo também tenham surgido nessa época de grande mudança evolutiva.

Figura 2. Interação entre duas espécies observadas em fósseis de 512 milhões de anos. A, B. Conchas de braquiópodes fossilizadas mostrando estruturas tubulares incrustadas em suas conchas. C. Reconstrução artística dos braquiópodes Neobolus wulongqingensis com os organismos cleptoparasitas incrustados. A abertura dos tubos estava sempre orientada para a extremidade anterior dos braquiópodes (Arte de Rebecca Gelernter, Near Bird Studios). Reproduzido de Zhang e colaboradores, 2020.

Mais de 500 milhões de anos se passaram e diferentes espécies ainda continuam se aproveitando dos esforços alheios para obter vantagens individuais, mostrando o sucesso deste estilo de vida. Dentre elas, está a nossa própria espécie, que usa uma das formas mais comuns de cleptoparasitismo, usurpando recursos de outras espécies (atire a primeira pedra quem não usa mel para adoçar o chazinho), mas também apresenta várias inovações, como suspeitos depósitos em cheques, transações imobiliárias em espécie e até novas estratégias para esconder o produto do crime em locais inusitados. É, não está “fóssil”…

Tatiana Teixeira Torres (USP)

Para saber mais:

– Tito Aureliano, Aline M. Ghilardi (2020) DINO ZOMBIE: blood parasites and severe bone disease hit dinosaurs.  Colecionadores de ossos, 05/09/2019.

Video de divulgação em português apresentado pelos pesquisadores Tito Aureliano e Aline M. Ghilardi no canal Colecionadores de ossos do Youtube, que integra a plataforma Science Vlogs Brasil. No video, os pesquisadores contam como foi feita a descoberta dos parasitas sanguíneos nos ossos de um dinossauro da família dos Titanossauros .

– Tommy L. F. Leung (2015) Fossils of parasites: what can the fossil record tell us about the evolution of parasitism? Biological Reviews, 92, 410–430.

Revisão em inglês com o levantamento de registros fósseis de parasitas e casos em que o parasitismo foi atribuído erroneamente alguns espécimes fósseis que, ao serem reexaminados, apresentam características prováveis ​​de serem encontradas também em taxa de vida livre.

Evolução pode ocorrer sem seleção natural?

De acordo com a Teoria Neutra, desenvolvida há mais de 50 anos, evolução sem seleção seria comum. Essa ideia ainda é apoiada nos dias atuais? Assista à entrevista feita por Diogo Meyer com o biólogo Carlos Schrago, em que discutem o legado que a teoria neutra nos deixou.

Por muito tempo, a seleção natural foi vista como o principal mecanismo capaz de gerar transformação evolutiva. Para arquitetos da síntese evolutiva moderna, como Ernst Mayr (1904-2005) e George Gaylord Simpson (1902-1984), o estudo da seleção ocupava um papel central na biologia evolutiva.

Na década de 1960 essa visão foi desafiada (conforme discutido num post de Tatiana Torres, aqui no Darwinianas). Num trabalho publicado em 1968, o biólogo Motoo Kimura (1924-1994) lançou as bases da Teoria Neutra da Evolução Molecular. De acordo com a Teoria Neutra, a maioria das mudanças que ocorre em nível molecular é consequência de um fenômeno aleatório, a deriva genética, e não da seleção natural.

A teoria neutra trouxe uma nova perspectiva para a biologia, prevendo que genes menos importantes para a sobrevivência dos organismos evoluiriam de modo rápido, pois poderiam acumular mutações aleatórias. Os genes importantes, por outro lado, seriam conservados, pois mutações não seriam toleradas. Para a teoria neutra, quando há muita mudança temos indício de fenômenos aleatórios, não de seleção.

Essa teoria de mais de 50 anos ainda é importante nos dias de hoje? Qual seu legado para a forma como os cientistas pensam? Numa conversa com Diogo Meyer, o biólogo Carlos Schrago, da Universidade Federal do Rio de Janeiro, examina quanto o modo de pensar introduzido pela Teoria Neutra ainda segue conosco.

Diogo Meyer (USP)

Para saber mais:

De luzes e de sombras

Genes para monogamia em ratinhos fofos: o que há de verdade na relação entre genes e comportamento

Das sombras surgem seres de escuridão. Sem existência própria, desaparecem sob a luz, dela se escondem, mas a ela perseguem sempre, curiosos pelo luminoso. Na luz plena e desimpedida inexistem. A escuridão inteira é seu próprio lar. Podem as sombras mover as coisas? Ora, as coisas inanimadas, não, mas os vivos, ah … os vivos, estes se movem por si, e sua imaginação se encarrega de dar vida a qualquer canto escuro.

Sombras não podem mover coisas. Este foi o grande argumento de Thomas Huxley (1825–1895), conhecido como o buldogue de Darwin, ao defender um materialismo, segundo ele, fundamentado no darwinismo. Em uma palestra que ficou famosa, Huxley dizia que, da mesma forma que não haveria nenhuma enteléquia, nenhuma entidade sobrenatural, nenhuma energia misteriosa que operasse a transformação do vapor em água líquida, em gelo, em gás, seria dessa mesma forma que as leis físicas seriam suficientes para dar conta de outros fenômenos, também naturais, como a vida e a mente. Huxley descartou que devêssemos supor a existência de uma energia vital, um espírito, uma mente imaterial que concorresse na explicação da vida.

À época os cientistas estavam descobrindo a eletricidade, e fazer corpos de sapos mortos se moverem com descargas desta nova ‘substância’ elétrica  se tornou entretenimento fácil para a aristocracia. Estas ‘experiências’ públicas de revivificação reanimaram a discussão sobre o que nos tornava vivos, uma discussão antiga, que remonta aos primeiros autômatos, hidráulicos ou mecânicos, estatuetas que se moviam, dançavam, tocavam instrumentos, ou jogavam água nos passantes (para o divertimento de entediados aristocratas escondidos em meio ao jardim), experiências que estimularam a imaginação de toda uma época ao simular o ressurgimento da vida em um corpo morto. Novamente a humanidade entretinha o sempre atual sonho de sair de sua condição de mera criatura, para assumir o posto de criadora.

Mary Shelley (1797-1851), uma das primeiras britânicas a ter grande e reconhecido sucesso na literatura, criou um personagem, em muitos sentidos, imortal. Seu Frankenstein era uma montagem de peças de outros seres, pedaços que ganham vida, que adquirem uma consciência unificada após uma forte descarga elétrica. Em muitos sentidos este foi um século eletrizante. Um século que teve gênios como Lamarck, Darwin e Freud, os dois primeiros retirando o ser humano do centro da criação divina, e quiçá deixando de lado toda e qualquer divindade, e o último retirando-nos do centro de controle de nossas próprias ações, doravante comandadas a partir das trevas do inconsciente.

Todas estas metáforas giram ao redor do surgimento da vida, mais que isso, um passo além disso, giram ao redor do surgimento de agentes conscientes a partir da matéria bruta. Enquanto para alguns esta agência consciente requer um salto qualitativo, não podendo ser explicada meramente por leis físicas, e aqui falamos de Descartes, e de religiões em geral, para outros, como Huxley, essa aparência de um salto qualitativo era fruto de nossa ignorância. Para ele, era apenas uma questão de tempo até que as leis da psicologia ou da biologia pudessem ser reduzidas aos átomos da consciência e, superada nossa ignorância acerca destes fenômenos, veríamos que o surgimento da vida passaria a ser explicado como uma mudança de fase, como o surgimento da água, líquida, a partir da condensação do vapor, de água. És água, e à água retornarás.

Para Huxley e, de modo mais amplo, para boa parte da fisiologia e da psicofísica daquele tempo, era importante não deixar renascer qualquer tipo de animismo, era importante eliminar explicações que envolvessem energias vitais, que permitissem o intercurso de entidades mágicas. O vitalismo fora um influente princípio nos séculos XVII e XVIII, mas foi lentamente perdendo força nos meios científicos[1], dado que experimentos terminaram por refutar suas explicações.

Neste período vive também Émile Durkheim (1858–1917), sociólogo francês e, de fato, o principal formulador da própria Sociologia, ao lado de nomes como Karl Marx e Max Weber.  Durkheim se opõe fortemente à escola da psicofísica, defendendo que as representações, as imagens mentais e sensações, não são como sombras, dado que as representações poderiam ter um efeito causal sobre nossos pensamentos e comportamentos. Diferentemente de Huxley, Durkheim defende que há algo além das leis físicas atuando na mente, que este algo são as representações (que em conjunto comporiam um espírito), e que estas representações poderiam uma estimular a outra, ativando o organismo, ativando a matéria nervosa que lhes serve de residência.

Em oposição a Durkheim, William James (1842–1910), eminente psicólogo norte-estadunidense, defenderia que a memória é estática, é um resíduo orgânico deixado pelo funcionamento neural: em uma linguagem mais contemporânea, diríamos que é um conjunto de sinapses (conexões entre neurônios) estruturalmente modificadas. Em nossa luminosa metáfora, as redes neurais seriam, para James, a luz que gera múltiplas sombras (sensações, representações, abstrações) e que, findas as sensações, restariam apenas as marcas orgânicas de sua prévia existência, um conjunto de sinapses reforçadas pela experiência. Esta rede neural modificada pela experiência facilitaria o surgimento posterior de novas réplicas destas mesmas sensações (lembranças destas sensações), ao facilitar a replicação no agora daquele anterior funcionamento neural.

Nesta influente visão do comportamento, as sensações, as representações, nossos pensamentos e abstrações, seriam apenas sombras (os filósofos dão a isso o pomposo nome de epifenômenos). Ora, sombras não poderiam ser causa de mais nada, pois elas são passageiras, e comandadas pela luz. Nossa memória, a cada instante que lembramos de nossa falecida e querida avó, nossa memória é uma nova memória, uma nova imagem mental (leia-se, funcionamento neural) construída no aqui e no agora, e que só pode ser construída à semelhança do passado porque essas sinapses são estruturas morfológicas que dão uma certa continuidade entre experiência passada e memória presente. Uma boa metáfora é a de uma rede de canais: se alteramos a estrutura física (a morfologia) da rede de canais, o fluxo de água também se altera; a cada nova descarga de água, o fluxo será novamente igual ao do passado porquanto a rede de canais se mantenha intacta. Para William James, a rede de canais é a memória, a descarga de água são os estímulos do mundo externo, e o fluxo de água são nossas sensações, representações, abstrações, pensamentos. Para replicar (lembrar) um mesmo funcionamento (sensação) basta que a rede neural se mantenha (memória) e que a estimulação externa seja similar à que tivemos no passado: ao vermos uma velhinha na rua, lembramos de nossa falecida avó, ainda viva em nosso imaginário.

Durkheim rebate esta posição de James. Para Durkheim as representações (sensações, pensamentos, abstrações) não são sombras, não são epifenômenos. Em realidade, ele coloca em xeque a própria noção de epifenômeno: dizer que elementos ou propriedades no mundo, como as representações, podem ter maior ou menor poder causal seria, segundo Durkheim, compreensível; mas dizer que representações não podem ter efeito algum, isso lhe parece um equívoco. Por que, afinal, algo que tem uma existência real seria impedido de gerar consequências neste mesmo mundo real? De onde viria uma tal proibição? O fato de que sombras não causam a si próprias não as impede de terem efeitos no mundo. Objetos se escurecem ao adentrar zonas sombreadas, em dias quentes, procuramos uma sombra para reduzir nosso calor. Sombras têm efeitos no mundo real.

Apesar de sua fundamental importância para a Sociologia, Durkheim foi ignorado na Biologia, e duvido que neurocientistas trabalhando hoje com os mistérios da mente sequer tenham ouvido falar dele. No entanto, todo o seu discurso sobre a mente vem sendo inadvertidamente reabilitado por pesquisadores que adotam uma abordagem organizacional para explicar a mente, entre os quais me incluo. Para estes pesquisadores, a mente seria uma organização no sistema nervoso, uma organização autônoma, que lê tanto o mundo externo (ambiente) quanto o mundo interno (corpo) para a tomada de decisão. É interessante notar que, sendo uma organização, a mente não seria propriamente material, mas sim uma específica organização da matéria. Isto explicaria de certa forma o insight de gerações de filósofos e pesquisadores que postularam a imaterialidade da mente. A mente seria então uma organização autônoma que buscaria atingir seus próprios objetivos e que, para isso, se utilizaria tanto de ferramentas externas (teias, ninhos, martelos, bigornas, computadores) quanto de ferramentas internas (genes, hormônios, proteínas de membrana). Para ressaltar esta autonomia (e não independência) da mente em relação ao corpo, vou finalizar esta nossa digressão histórica comentando pesquisas recentes sobre uns ratinhos fofos que formam casais para a vida inteira, até que a morte os separe.

Os arganazes (ou ratinhos fofos) formam pares monogâmicos (casais para a vida toda), e recentemente foi desvendada a genética subjacente a este peculiar estilo de vida matrimonial. Primeiro, ficou claro que níveis maiores de ocitocina e vasopressina (neurotransmissores que conectam certas sinapses, as ligações entre neurônios), em locais específicos do cérebro, auxiliam na monogamia. Espécies irmãs e não monogâmicas desses ratinhos regulam para baixo (diminuem a produção de) estes neurotransmissores. O mesmo vale para a regulação da expressão de dopamina (outro neurotransmissor), também acentuada em regiões específicas do cérebro monogâmico. Estes resultados foram noticiados como sendo a descoberta do interruptor genético da monogamia: dos genes que regulam para cima a expressão dos citados neurotransmissores. Contada desta forma, parece que nossas ratinhas e ratinhos não têm opção: dado que esta espécie possui este gene, um indivíduo qualquer desta espécie será necessariamente monogâmico. Mais que isso, parece que seu destino conjugal já está traçado em sua genética. Agora, o que esta história deixa de lado (ou conta apenas nas entrelinhas) é que a ativação do gene regulador da monogamia só acontece depois que o casal decidiu ficar junto. Percebam o detalhe: o casal decidiu ficar junto, não foi nem um, nem outro indivíduo: quando um não quer, dois não casam. Assim, uma ratinha em sua vida normal copula muitas vezes com muitos ratos antes de formar um casal, pois há um processo de escolha que antecede a monogamia. Pode acontecer de pares nem se formarem: alguns indivíduos podem não se reproduzir. Pode acontecer de casais de ratinhos já formados copularem fora do matrimônio, e continuarem casados. O que esta nova história, agora mais detalhada, revela é que os genes não são a causa da formação de um par monogâmico, eles não tomam a decisão pelos indivíduos. Eles são ativados pelo indivíduo após uma série de decisões feitas pelo casal: vou cortejar esta fêmea, vou aceitar copular com este macho, este macho parece ótimo e vou ficar por aqui com ele após a cópula, esta fêmea foi incrível e vou ficar com ela mais um tempinho. Só após copularem e permanecerem juntos por ao menos 6h é que os tais genes da monogamia são ativados. A ativação dos genes não é a causa da formação do casal, mas sim a consequência de uma decisão do casal, e a decisão poderia muito bem ter sido outra, porque ela depende da experiência de vida de cada um dos envolvidos, depende do que aquela fêmea em particular aprendeu sobre machos em geral, experiências com outros machos que a fizeram ao final escolher aquele macho em particular. O que esta história mais detalhada transparece é que os genes são uma ferramenta utilizada pelos ratinhos para estabelecer uma relação monogâmica. Os sujeitos da decisão são os indivíduos, os organismos, e não seus genes. O que esta história mais detalhada mostra é que não podemos confundir a influência que um gene possa ter na expressão de um comportamento com as decisões do indivíduo ao se comportar de uma ou outra maneira. Sofremos muitas influências, por exemplo, a fome me influencia a ir em busca de alimento. Mas a fome não decide por mim: eu posso decidir buscar alimento mais tarde, porque eu tenho um sistema cognitivo que é autônomo em suas decisões, autônomo em relação aos estados internos de meu corpo (minha fome, meus genes), e em relação aos estímulos do ambiente externo. Percebam que minhas decisões não são independentes destas influências: autonomia não é independência. A decisão de formar um par monogâmico é minha, mas ela não terá efeito se os ratinhos não tiverem como aumentar a expressão de genes particulares em locais específicos do cérebro: a decisão depende de que os genes funcionem para ser efetiva, do mesmo jeito que, para ser efetiva a decisão, os ratinhos precisam ter um coração batendo, pernas funcionando, pulmões em bom estado e … genes específicos em locais particulares, em bom funcionamento. Esta autonomia tem sido deixada de lado na história da Etologia (o estudo do comportamento), e postulamos ora que somos fruto do meio (Skinner), ora que somos maquinetas instintivas (Lorenz). O problema é que em ambos esses casos nós somos concebidos como seres sem autonomia sobre nossas decisões. Isso está muito errado.

Hilton Japyassú

Universidade Federal da Bahia

Para saber mais:

Cormier, Zoe, and Zuoxin Wang. “Gene switches make prairie voles fall in love.” Nature (2013).

Durkheim, E. 2009 (1898). Representações individuais e representações coletivas, in Durkheim, E. Sociologia e filosofia. Martin Claret Editora.


[1] A história do vitalismo remonta ao Egito antigo, passa pela filosofia grega, suplanta a Idade Média em nomes respeitados, como Malpighi, e chega ao século XIX e XX na mão de cientistas como Müller, Driesch. O vitalismo persiste ainda hoje em muitas práticas de cura tradicionais, que sugerem que as doenças derivariam, por exemplo, de um desequilíbrio entre forças ou energias vitais (nunca especificadas, nunca encontradas). Percebam que, o fato de nunca terem sido encontradas faz com que tais energias não possam ser uma explicação para a doença, ou para a cura através de práticas tradicionais. No entanto, a prática, o tratamento aplicado em terapias tradicionais, pode ser eficaz, o que estaria errado seriam as explicações vitalistas para esta eficácia. A prática pode estar certa, mesmo tendo por trás de si uma teoria errada. A prática, ao ignorar os equívocos de sua teoria, ao reter como conhecimento teorias já refutadas, pode assim mesmo evoluir, só que mais lentamente, posto que presa a um imaginário equivocado. Longe da luz provida pela teoria adequada, as práticas tradicionais tateiam e se arrastam à deriva, no escuro.

Uma conversa sobre ciência

Como a ciência joga luz sobre questões complexas? Já discutimos no Darwinianas que a produção do conhecimento muitas vezes requer o desenvolvimento de modelos. Modelos são representações da realidade que deixam de fora parte de sua complexidade  e dessa forma tornam fenômenos naturais passíveis de explicação e mais acessíveis para nossa cognição, nossas ferramentas experimentais e nossa capacidade analítica.

O recurso a modelos é algo tão inerente ao modo como fazemos ciência que às vezes até esquecemos que nosso conhecimento é intermediado por eles. No post desta semana do Darwinianas , compartilhamos um vídeo de uma conversa com Charbel Niño El-Hani, um dos autores do blog, a respeito do papel de modelos em biologia. A conversa foi originalmente gravada para um curso de Biologia Evolutiva da Universidade de São Paulo, e é motivada pelo uso de modelos no estudo da evolução.

Charbel discute a importância de modelos na ciência e a necessidade de estarmos sempre atentos aos limites impostos pelospropósitos, natureza e estrutura de cada modelo. A ciência depende de bons modelos, mas mesmo bons modelos precisam ser continuamente examinados com um olhar crítico.

O que a evolução do córtex de hominíneos tem a ver com a duplicação de pedaços de cromossomos?

Ao estudar novos genes que surgiram em nossa linhagem, cientistas estão desvendando como o seu surgimento pode ter influenciado o tamanho do nosso cérebro.

Na história do estudo do cérebro, não há estrutura mais estudada do que o córtex cerebral. Uma das razões é que o nosso córtex cerebral é particularmente grande quando comparado ao de outros grandes primatas. É no córtex que acontece boa parte do processamento necessário para a nossa cognição. Assim, entender de onde vem esse córtex diferente que nós temos pode ajudar a explicar as origens desse macaco pensador. Mas até muito recentemente, nós não tínhamos muitas pistas sobre os mecanismos que levaram ao desenvolvimento deste córtex maior. Tudo mudou quando descobrimos, há menos de dez anos, algumas duplicações de pedacinhos de nossos cromossomos. Mas para entender a importância destes pedacinhos, precisamos primeiro olhar como se forma o córtex cerebral.

O córtex cerebral, como qualquer outra estrutura do sistema nervoso central, se forma a partir do tubo neural.  O tubo neural é um folheto de células em divisão. Em um primeiro momento, estas células se dividindo não se diferenciam, são células tronco neurais, com capacidade de originar neurônios e células da glia.  Depois de um tempo, algumas células deixam o ciclo celular, começam a se diferenciar e migram das porções mais internas do tubo em direção ao seu exterior

Figura 1: Representações do desenvolvimento do córtex em três momentos. À esquerda, a placa cortical mais jovem, no qual as células são, em sua maioria, células tronco neurais, próximos ao centro do tubo (abaixo). Quanto mais progride o desenvolvimento, mais células param de se dividir e se diferenciam em neurônios (acima). Esta migração contínua de novas células acaba por aumentar a espessura do córtex.

Durante o desenvolvimento, as paredes do tubo neural vão ganhando espessura, acrescentando mais e mais camadas. Após a sua migração, parte das células se diferencia em neurônios e outra parte em células da glia. Os neurônios então começam a emitir prolongamentos que podem se conectar com alvos próximos ou muito distantes. É por conta destas conexões à distância que se forma o que chamamos de substância branca, grandes regiões do nosso cérebro dedicadas à passagem de cabos conectores, os axônios.  Todos estes fenômenos podem levar a um córtex maior. Se cada célula tronco neural se dividir mais vezes, gerando mais neurônios e/ou glia, estas células a mais ocuparão mais espaço. Se os neurônios formarem mais conexões, elas ocuparão mais volume e a substância branca irá também aumentar. Muitas espécies de mamíferos possuem um córtex tão grande e extenso que ele se acomoda à caixa craniana por meio de dobras em estruturas que chamamos de sulcos e giros. Qualquer modificação na expressão de moléculas que regulem estes fenômenos tem o potencial de gerar uma catástrofe, como malformações cerebrais, mas também modificações que são novidades sobre as quais a seleção natural pode operar, levando a alterações, por exemplo, na capacidade cognitiva da espécie.

As técnicas de sequenciamento de DNA sofreram uma grande revolução no começo deste século com a chegada das técnicas de sequenciamento de nova geração, do inglês next generation sequencing. Nesta tecnologia, o genoma é quebrado em pequenas sequências de DNA que são sequenciadas várias vezes. Nestas várias vezes, a mesma sequência aparece às vezes associada com nucleotídeos mais abaixo na cadeia e às vezes com nucleotídeos mais acima. Combinando a informação sobre estas relações de vizinhança, podemos montar um quebra cabeça para obter a sequência toda. Obviamente ninguém monta um genoma com bilhões de nucleotídeos no olho. Para isso, um grande esforço de desenvolvimento de ferramentas de bioinformática foi criado. Mas mesmo com todas estas ferramentas, o montar do quebra cabeça pode ser especialmente desafiador quando estas sequências são muito repetitivas ou duplicadas. Uma das soluções foi voltar a técnicas antigas para realizar o sequenciamento de cadeias de nucleotídeos longas. A outra foi investir em algoritmos melhores, à medida que fomos aprendendo sobre estas falhas. Assim, apesar de termos o primeiro genoma humano desde 2003, foi somente em 2014 que conseguimos detectar duplicações de um grupo importante de genes para os nossos cérebros. E esses genes duplicados deram o que falar.

Hoje em dia, além de termos muitos genomas de seres humanos sequenciados, temos também genomas de grandes macacos, como chimpanzés e gorilas, e grandes pedaços de genomas de hominíneos extintos, como Neandertais. A partir da comparação entre estes genomas, podemos detectar quais genes foram duplicados em nossa linhagem. Dentre os genes encontrados, alguns são expressos durante o desenvolvimento do córtex cerebral e são, assim, possíveis fontes de novidades evolutivas nessa estrutura. Isso porque hoje sabemos que o gene duplicado não sofre as mesmas pressões seletivas para manter as funções desempenhadas pelo gene ancestral. Nele pode haver modificações que eventualmente criem uma nova função. Mas o simples fato de o gene novo ser expresso em um córtex diferente não quer dizer que um causou o outro. E é aí que entram os experimentos que testam a função do gene.

Mas aqui esbarramos em um problema. Como testar o efeito de um gene novo para hominíneos se é eticamente inaceitável realizar um teste da sua função em um embrião humano? Para isso, criamos modelos que se aproximam o máximo possível do que sabemos sobre o desenvolvimento do córtex cerebral em humanos. Tomemos então aqui como exemplo o estudo de um dos genes identificados como potencial novidade na evolução do córtex cerebral, que foi chamado de ARHGAP11B. Este gene não está presente em nenhum dos grandes primatas, mas está presente em Neandertais, hominíneos de Denisova e todos os humanos modernos. O ARHGAP11B é o produto da duplicação parcial do gene ARHGAP11A. A enzima ARHGAP11A, resultante da transcrição e tradução do gene de mesmo nome, é uma enzima envolvida na sinalização intracelular. Mas ARHGAP11B perdeu esta função, pois graças à substituição de uma única citosina por uma guanina, criou-se um novo sítio para splicing que acaba por remover 55 nucleotídeos originais de seu RNA mensageiro. Esta mudança acabou por gerar uma parte completamente nova desta proteína, que perdeu sua atividade enzimática original, mas ganhou uma nova função.

Para descobrir que função é esta, Marta Florio e seus colaboradores se perguntaram se este gene específico de humanos, quando expresso em células tronco neurais do córtex cerebral em formação de camundongos, teria algum efeito. Os pesquisadores promoveram, então, a expressão artificial de ARHGAP11B no cérebro de embriões de camundongo. O que eles observaram foi que, na presença de ARHGAP11B, as células tronco neurais se dividem mais e o córtex cerebral ganha sulcos e giros, que não existem no cérebro liso desses animais. Assim, o uso de embriões de camundongo como modelo sugere indiretamente que a função nova de ARHGAP11B pode ter contribuído para a expansão do córtex de hominíneos.

Mas será que o efeito observado é uma propriedade única da expressão artificial em células de camundongo? O que aconteceria se ele fosse expresso nas células de um primata? Aí entra uma nova corrida tecnológica. A criação de um modelo animal, que atenda requisitos de um animal de laboratório, mas que seja um primata. Para isso, a espécie escolhida foi Callithrix jacchus (o sagui, ou sorin, para nós aqui no RN). Para conseguir saguis expressando ARHGAP11B, este mesmo grupo injetou um lentivírus contendo o gene e sua região regulatória em óvulos fertilizados. Assim, eles obtiveram embriões em que o gene foi incorporado ao genoma. Após isso, os embriões foram transferidos para fêmeas para a gestação. Os embriões que receberam o gene com sucesso apresentaram ampliação no número de células tronco neurais, de novos neurônios e formaram sulcos e giros no córtex cerebral, que em saguis também é liso. Assim, as evidências indiretas da participação de ARHGAP11B na expansão cortical se acumulam. A proteína possui efeitos semelhantes em progenitores corticais de espécies diferentes, não parecendo ser esta observação apenas um efeito colateral do modelo. ARHGAP11B se soma a outros genes novos de hominíneos que atuam no desenvolvimento cortical, como NOTCH2NL, cuja duplicação também causou o aumento no número de divisões que as células tronco neurais fazem, e SRGAP2C, que se tornou um inibidor da proteína produzida pelo gene original (que é um inibidor de sinapses e ramificações de neurônios). Como SRGAP2C é um inibidor de uma proteína inibidora da formação de sinapses, ela acaba sendo um estimulador de sinapses. Todos estes genes estavam presentes em Neandertais e hominíneos de Denisova. Por isso, é difícil acomodar na hipótese molecular atual a ideia preconceituosa de que nós seríamos intelectualmente superiores ou mesmo teríamos um córtex mais avantajado do que os hominíneos com os quais convivemos no último milhão de anos.

Eduardo Sequerra (UFRN)

PARA SABER MAIS:

Marta Florio, Victor Borrell e Wieland Huttner (2017) Human-specific genomic signatures of neocortical expansion. Current Opinion in Neurobiology

Os desafios da hidra

As hidras mostram que sua constância morfológica é um redemoinho de células modulado pelo diálogo de seu genoma com o ambiente. E nos desafiam novamente a repensar conceitos.

Em 1741, o naturalista suíço Abraham Trembley descreveu uma pequena criatura que habitava lagos e rios da Europa. Ela era verde, tinha forma de tubo e passava a maior parte do tempo agarrada ao substrato, como uma alga. Mas às vezes se soltava e caminhava lentamente para um novo local, dando graciosas cambalhotas. Tinha tentáculos delicados na parte de cima que variavam em número entre diferentes indivíduos, algo incomum para uma espécie de animal.

Trembley não tinha certeza se a criatura era uma planta ou um animal. Para responder essa dúvida, ele fez um experimento, método que só viria a ser comum em biologia mais de um século depois. Ele cortou a criatura ao meio e elaborou uma hipótese: se fosse um animal, morreria; se fosse uma planta, brotariam dois novos indivíduos. Após alguns dias, cada parte da criatura cortada ao meio gerou dois indivíduos completos (Figura 1). E quando cortada em quatro partes também. Não importando se eram pedaços grandes ou pequenos, cortes verticais ou horizontais, sempre se regeneravam organismos completos de cada fragmento.

Trembley concluiu que era uma planta. Mas sua conclusão ruiu quando observou um indivíduo capturar e comer uma presa. Tratava-se de um animal com capacidades extremas de regeneração. Linnaeus batizou o animal de Hydra, em referência ao mito grego de Hidra de Lerna, um monstro marinho capaz de regenerar uma nova cabeça cada vez que era cortada (foi finalmente derrotado por Héracles com a ajuda de um cauterizador).

Figura 1: Estátua de Héracles lutando contra Hidra de Lerna, no Louvre, em Paris (esquerda); Uma Hydra cortada em duas partes regenera dois indivíduos completos (esquerda).

A pequena Hydra de Trembley foi mais que uma curiosidade para ciência do século XVIII. Foi uma monstruosa anomalia para as teorias preformistas apoiadas na visão mecanicista do animal máquina. Para os preformistas, a forma do animal adulto preexistia miniaturizada em ovos ou espermatozoides. Não havia verdadeira geração da forma, mas simplesmente crescimento. A hidra desafiava essa concepção ao gerar novos indivíduos a partir de diferentes partes. Um século depois, o preformacionismo foi completamente abandonado e a visão de que a forma dos animais é construída durante o desenvolvimento embrionário se tornou um consenso.

As hidras são cnidários, como os corais, anêmonas e águas-vivas. Na biologia contemporânea, ela se tornou um organismo-modelo para estudar os mecanismos celulares e moleculares que controlam a capacidade de regenerar partes e órgãos. As células de seu corpo, ao contrário das nossas, estão todas constantemente se dividindo e substituindo as antigas, em uma contínua recriação corporal. Células que se dividem na região central se movem continuamente em direção às extremidades, seguindo gradientes moleculares de proteínas na cabeça e na base do corpo. Quando cortada ao meio, a hidra regenera uma cabeça no lado que tinha maior concentração da proteína produzida na região da cabeça, coordenando assim a reconstrução do eixo corporal.

A proteína secretada por células na região da cabeça foi chamada de WNT e ativa a produção de outras proteínas nas células vizinhas. O número variável de tentáculos é uma indicação da potência da atividade de WNT. Quando uma molécula sintética que ativa a via de WNT é colocada na água, as hidras desenvolvem tentáculos em todo o corpo (Figura 2).  Um estudo publicado esse mês por cientistas alemães mostrou que o gradiente molecular de WNT depende também de fatores abióticos e bióticos. Indivíduos criados a 12°C desenvolvem em média 40% menos tentáculos do que indivíduos criados a 18°C, e indivíduos que tiveram as bactérias simbióticas da pele eliminadas pela aplicação de antibióticos desenvolvem quatro vezes mais tentáculos. Mostraram ainda que temperatura e bactérias influenciam diretamente onde se expressam genes do genoma da hidra.

Figura 2: Expressão de WNT na região apical de uma Hydra (esquerda); Plasticidade de uma Hydra exposta a diferentes temperaturas.

A biologia moderna frequentemente descreve o desenvolvimento embrionário como um processo controlado autonomamente pelo genoma em direção a um estado adulto estável. O ambiente é visto como condição de fundo ou fonte de ruído de um processo que é controlado internamente. Mas as hidras mostram que sua constância morfológica é um redemoinho de células modulado pelo diálogo de seu genoma com o ambiente.  E nos desafiam novamente a repensar conceitos.

João Francisco Botelho (PUC de Chile)

Para saber mais

Gilbert, Scott F., Thomas CG Bosch, and Cristina Ledón-Rettig. “Eco-Evo-Devo: developmental symbiosis and developmental plasticity as evolutionary agents.” Nature Reviews Genetics 16.10 (2015): 611-622.

Taubenheim J, Willoweit-Ohl D, Knop M, Franzenburg S, He J, Bosch TCG, et al. Bacteria- and temperature-regulated peptides modulate β-catenin signaling in Hydra. Proc Natl Acad Sci U S A. 2020;117(35):21459-68.

Vogg, Matthias C., Brigitte Galliot, and Charisios D. Tsiairis. “Model systems for regeneration: Hydra.” Development 146.21 (2019).