Por uma síntese evolutiva mais inclusiva: a Epigenética e a evolução do genoma

Um artigo de revisão publicado no início desse ano fez um apanhado das várias maneiras pelas quais os mecanismos epigenéticos estão associados não apenas aos padrões de expressão gênica mas também a mutações no DNA, influenciando em larga escala a maneira como os genomas evoluem.

Uma das buscas incessantes da Biologia é a da descoberta dos mecanismos evolutivos e suas respectivas contribuições para a diversidade dos organismos vivos. Desde Darwin, a seleção natural é, sem dúvida, um dos processos evolutivos mais importantes, mas a lista hoje é relativamente longa. Processos como a deriva gênica, as migrações e mutações, por exemplo, fazem parte dessa lista. E quanto mais estudamos, mais descobrimos outros processos importantes para entendermos como os organismos vivos evoluem.

Nas últimas três décadas, com a revolução nos métodos de sequenciamento de DNA, o estudo dos genomas se tornou possível em larga escala, inaugurando uma nova área de pesquisa biológica, a Genômica. Consequentemente, a pergunta “Como os genomas evoluem?” foi um questionamento natural para os pesquisadores desse novo campo. E diversos processos já foram identificados para explicar a evolução do genoma, tais como as duplicações completas de genomas (do inglês whole genome duplications), já discutidas em um post aqui no Darwinianas, a transposição dos elementos genéticos móveis e os rearranjos genômicos. Recentemente, os mecanismos epigenéticos, até então primariamente envolvidos no estabelecimento dos padrões de expressão gênica, se tornaram foco dos estudos sobre evolução do genoma. Discutiremos nesse post não apenas de que maneira os mecanismos epigenéticos podem influenciar a evolução dos genomas, mas também quais as principais implicações dessa descoberta para o nosso entendimento a respeito da evolução biológica em geral.

Antes de nos debruçarmos especificamente sobre a maneira pela qual os processos epigenéticos contribuem para a evolução do genoma, vamos entender o que quero dizer com processos epigenéticos.  A Epigenética estuda as modificações químicas no DNA e nas proteínas a ele associadas sem, no entanto, resultar na modificação da sequência do DNA em si. Hoje conhecemos diversos mecanismos epigenéticos, e focarei em apenas dois dos principais: a metilação do DNA e as modificações das histonas, o principal grupo de proteínas associado ao DNA dos eucariotos, formando, através da associação DNA-histonas, o que chamamos de cromatina (Figura 1).

Figura_1

Figura 1 – Representação do DNA e do nucleossoma. (A) Uma representação da dupla hélice de DNA, enfatizando em cores, os nucleotídeos que formam a sequência do DNA. Os círculos pretos ressaltam os grupos metila (CH3) associados a citosinas (C). (B) Visualização do nucleossoma, resultado da associação entre o DNA, em azul, e as proteínas histonas, em vermelho. Note como as histonas projetam “caudas” para além do DNA (setas). Essas caudas são as regiões onde ocorrem as modificações das histonas, alterando assim a interação dessas proteínas com o DNA.

A metilação do DNA ocorre geralmente por meio da adição de um grupo metila (CH3) a citosinas, apesar de hoje sabermos que outros nucleotídeos também podem sofrer metilação. Quando essa metilação ocorre perto de genes, estes são, em geral, silenciados, ou seja, têm a sua expressão significativamente reduzida. Outro tipo de marca epigenética ocorre por modificação química das “caudas” das proteínas histonas, como mostra a Figura 1B. Variados grupos químicos podem ser adicionados as histonas, com consequências diversas para a expressão dos genes localizados na proximidade. A explicação mais aceita para o efeito dessas modificações nos padrões de expressão gênica se deve à força de atração entre as histonas e o DNA: quando a atração é forte, ela dificulta o acesso ao DNA da maquinaria de transcrição, primeiro passo para a expressão gênica. O inverso também é verdadeiro: quando a associação é mais fraca, o DNA fica mais accessível e os genes ali presentes são, em geral, mais expressos.

Exatamente por não afetar a sequência de nucleotídeos do DNA, os mecanismos epigenéticos sempre estiveram associados ao estabelecimento dos padrões de expressão gênica e raramente foram implicados em mecanismos capazes de explicar a evolução do genoma em si.  Um artigo publicado recentemente, no entanto, nos ajudou a desafiar essa ideia, através da apresentação do que sabemos a respeito do papel dos mecanismos epigenéticos na alteração da sequência de nucleotídeos do DNA, influenciando, direta e indiretamente, a evolução do genoma. Em geral, esses mecanismos estão envolvidos na evolução do genoma ao menos de três formas: (1) por afetar os processos de mutação e reparo do DNA, (2) por alterar a atividade dos elementos móveis do genoma, e (3) por influenciar a retenção de genes duplicados no genoma.

Há muito tempo sabemos que a metilação do DNA não apenas interfere nos padrões de expressão gênica, mas pode atuar também como agente mutagênico. As regiões metiladas do DNA apresentam taxas de mutações mais elevadas quando comparadas a outras regiões não metiladas do mesmo DNA. Sabemos também que as citosinas metiladas são mais susceptíveis a um processo de mutação conhecido como desaminação espontânea, resultando na sua modificação para uma timina (C  T). Com o tempo, essa aumentada taxa de mutação resulta na redução de citosinas no DNA e parece não ocorrer de maneira uniforme no genoma. Além disso, o posicionamento dos nucleossomas no DNA também afeta as taxas de mutação ao longo do genoma. Sabemos que DNA ligado fortemente a histonas é mais estável e apresenta menores taxas de mutação do que regiões onde o DNA liga-se apenas fracamente a essas proteínas. A explicação para essa diferença está na associação entre o grau de interação DNA-histonas e expressão gênica, como explicado acima. O primeiro passo da expressão gênica é a transcrição, a produção de uma molécula de RNA mensageiro a partir do gene localizado no DNA. Para que isso aconteça, no entanto, o DNA, normalmente fita dupla, precisa se abrir em fita simples, permitindo assim o acesso da maquinaria de transcrição. E DNA de fita simples está sujeito a mutações em uma frequência mais elevada do que o DNA de fita dupla. Além disso, o posicionamento dos nucleossomas e a força de interação DNA-histonas interfere também no acesso ao DNA das enzimas de reparo do DNA.

Além disso, mecanismos epigenéticos são eficientes em inibir o movimento dos elementos genéticos móveis. Os elementos genéticos móveis podem interromper a atividade de um gene ou alterar a sua expressão, a depender do local onde um elemento móvel seja inserido no genoma. Por inibir o movimento dos elementos genéticos móveis, os mecanismos epigenéticos controlam, ao menos em parte, mutações derivadas do movimento desses elementos. E acreditamos hoje que alguns dos mecanismos epigenéticos promoveram um aumento do fitness como resultado da sua capacidade de suprimir o movimento dos elementos móveis no genoma e foram, portanto, favorecidos pela seleção natural.

Talvez a contribuição mais fascinante dos mecanismos epigenéticos para a evolução do genoma esteja na sua influência sobre a retenção de genes duplicados.  Não há dúvidas de que a duplicação gênica é um importante processo evolutivo, além de ser um fenômeno bastante comum em praticamente todos os genomas estudados até hoje. E devido à redundância funcional entre o gene duplicado e o gene original, um resultado comum da duplicação gênica é o acúmulo de mutações que tornam uma das cópias não funcional. Assim, um dos passos principais para a manutenção de genes duplicados no genoma é a retenção inicial das duas cópias logo após a duplicação. E os processos epigenéticos fornecem um mecanismo pelo qual o silenciamento de genes duplicados pode proteger esses genes da seleção natural, aumentando sua probabilidade de retenção. Marcas epigenéticas são capazes de reduzir a expressão dos genes duplicados, prevenindo também a produção de um possível fenótipo com efeitos negativos sobre o fitness, isto é, sobre o sucesso reprodutivo do indivíduo. Os dados experimentais até então apoiam essa ideia: os padrões epigenéticos de genes duplicados e de genes de cópia única são distintos, e entre os genes duplicados, uma das cópias frequentemente exibe uma maior quantidade marcas epigenéticas, o que resulta também em diferenças na expressão das duas cópias.

Quanto mais nos debruçamos sobre os genomas dos vários organismos, hoje já sequenciados, percebemos a importância dos mecanismos epigenéticos na produção dos padrões evolutivos que observamos em seus genomas. Os mecanismos epigenéticos estão envolvidos não apenas no estabelecimento de padrões de expressão gênica, mas também na evolução molecular dos eucariotos. Precisamos, assim, de uma visão da evolução orgânica que seja abrangente o suficiente para levar em consideração os mecanismos epigenéticos, assim como vimos fazendo nas últimas décadas com os mecanismos do desenvolvimento. Não se trata, assim, de negar os mecanismos evolutivos já bastante estabelecidos, como a seleção natural ou a deriva genética, mas sim, como sugeriram Danchin e colaboradores, de construir uma síntese evolutiva ainda mais inclusiva.

 

Ana Almeida

California State University East Bay (CSUEB)

 

Para saber mais:

Entrevista com a cientista Eva Jablonka, na Revista do Instituto Humanitas Unisinos On-line. 2009. Epigenética e a teoria da evolução: suas compatibilidades.

Danchin E, Pocheville A, Rey O, Pujol B, Blanchet S. 2019. Epigenetically facilitated mutational assimilation: epigenetics as a hub within the inclusive evolutionary synthesis. Biol. Rev. 94, 259–282.

Feng JX, Riddle NC. 2020. Epigenetics and genome stability. Mamm. Genome 31, 181–195.

Makova KD, Hardison RC. 2015 The effects of chromatin organization on variation in mutation rates in the genome. Nat. Rev. Genet. 16, 213–223.

Schrader L, Schmitz J. 2019. The impact of transposable elements in adaptive evolution. Mol. Ecol. 28, 1537–1549.

Percharde M, Sultana T, Ramalho-Santos M. 2020. What doesn’t kill you makes you stronger: transposons as dual players in chromatin regulation and genomic variation. Bioessays 42, 1900232.

Deixe um comentário

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair /  Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair /  Alterar )

Conectando a %s

Este site utiliza o Akismet para reduzir spam. Saiba como seus dados em comentários são processados.

%d blogueiros gostam disto: