Ecologia da resistência

A resistência a antibióticos é um problema global que vem se acentuando a cada ano. Como a compreensão sobre a ecologia dos mecanismos de resistência pode nos auxiliar no combate a este problema?

Há um tempo postei aqui no Darwinianas um texto que ilustrou alguns experimentos que “flagraram” a evolução em tempo real. Em um destes experimentos foi utilizada um gradiente de concentração de antibióticos (menos antibióticos nas bordas das placas e mais no centro) para verificar se as bactérias se adaptariam a essas crescentes quantidades de antibióticos ao longo do tempo. Foi observado que sim e vimos que, através de eventos raros de mutação, as bactérias podem adquirir resistência a esses compostos tóxicos. Resumindo, vimos que os antibióticos são importantes agentes para a evolução, mas qual será a importância ecológica deles em comunidades naturais de microrganismos? Como esse conhecimento pode ser útil para solução de um dos grandes problemas de saúde que acometem a humanidade e pode se intensificar em um futuro próximo? No post de hoje exploraremos um pouco mais esse tópico.

Os antibióticos são substâncias produzidas naturalmente por microrganismos, bactérias e fungos na maioria das vezes. O primeiro antibiótico a ser descoberto foi a ampicilina. Alexander Fleming, em 1928, ao retornar de suas férias notou que placas de culturas de estafilococos (bactérias do gênero Staphylococcus), esquecidas por ele na bancada, estavam contaminadas por um fungo (Penicillium chrysogenum). Nessas placas, ele notou uma “zona” próxima aos fungos onde as bactérias não cresciam. Essas zonas são hoje chamadas de halos de inibição em testes chamados antibiogramas (Figura 1).

pedro2.png
Figura 1: Teste de susceptibilidade indicando a ação mais forte ou mais fraca, proporcionalmente ao tamanho do halo circundante aos discos de difusão, que são pedacinhos de papel embebidos com diferentes antibióticos ou com diferentes concentrações de um determinado tipo de antibiótico (Fonte da fotografia: https://kasvi.com.br/superbacterias-testes-de-sensibilidade/).

Os antibióticos podem agir matando diretamente microrganismos ou fazendo com que o crescimento de suas populações pare e com o tempo eles morram (ou, em casos de infecção, o sistema imune consiga erradicar as células infecciosas). Existem vários mecanismos moleculares relacionados com a ação dos antibióticos. Cada classe de antibiótico tem um mecanismo específico. Você pode estar se perguntando: “mas… e por que os fungos (ou as bactérias) que os produzem também não morrem?”. As células que produzem este “veneno” devem ser capazes de se proteger dele. Esses mecanismos de resistência são variados e as informações necessárias para produzi-los estão contidas no DNA, razão pela qual chamamos os genes em questão de Genes de Resistência a Antimicrobianos (GRA). Em ambiente natural os antibióticos são utilizados como armas na “guerra” pela sobrevivência e por recursos (alimentos e espaço) e é uma vantagem adaptativa muito grande ter a capacidade de produzi-los e/ou de proteger-se deles no mundo dos microrganismos. Apesar de ocorrerem naturalmente e a muitos sua origem ser muito antiga (ver abaixo), conhecemos os genes de resistência (ou bactérias resistentes, ou super-resistentes), pois tem sido um crescente problema de saúde mundial.

A resistência a antibióticos é tida como uma das maiores ameaças globais à saúde, à segurança dos alimentos e ao desenvolvimento pela Organização Mundial de Saúde. Estima-se que 700 mil pessoas morram por ano decorrentes de infecções graves por bactérias resistentes a antibióticos. Além desse fato alarmante, é importante mencionar que doenças como pneumonia, tuberculose e gonorreia estão se tornando cada vez mais difíceis de tratar. Isso faz com que o tempo de internação, os custos e a mortalidade decorrente dessas infecções aumentem. A uma altura dessas você deve estar preocupado, se perguntando o que pode estar causando este aumento e como podemos evitar casos como esses, certo? Uma das mais importantes causas do aumento crescente de bactérias super-resistentes (bactérias que têm resistência a múltiplos antibióticos), é o mal-uso ou abuso de antibióticos. Isso acontece porque as bactérias podem adquirir os genes de resistência de outras bactérias e os antibióticos, caso sejam administrados incorreta e excessivamente, a seleção natural agirá sobre as populações e manterá as bactérias que contêm arsenais de defesa contra os antibióticos. A resistência se propaga nas populações humanas e nos ambientes. Outras fontes importantes de genes de resistência a antibióticos são criatórios intensivos de animais que administram doses altas dessas drogas, selecionando microrganismos resistentes nos próprios animais, nos solos e na água destes locais.

Para entender melhor como estes genes estão distribuídos no ambiente e se podemos identificar uma fonte mais provável desses genes, diversos pesquisadores têm estudado as comunidades microbianas de ambientes naturais e ambientes com alta pressão humana. Os estudos apontam que locais onde há fortes pressões antrópicas, como, por exemplo, esgotos domésticos, hospitalares ou resíduos de indústrias farmacêuticas, têm maior abundância e diversidade de genes de resistência. Como visto acima, a seleção natural age eliminando os microrganismos que não podem se proteger dos antibióticos e selecionando os que podem, fazendo com que os mesmos sejam mais abundantes. Muitos desses estudos utilizam abordagens metagenômicas, ou seja, o sequenciamento do DNA ambiental (ver esse post aqui onde expliquei resumidamente o que é metagenômica). Alguns estudos apontam que os mecanismos de resistência são extremamente antigos e surgiram há aproximadamente 2 bilhões de anos. Mesmo sendo mais abundantes em ambientes sob maior pressão antrópica, os genes de resistência a antibióticos foram encontrados em ambientes tidos como pristinos, por exemplo, em solos da Antártica e do Alasca, em cavernas isoladas e em solos permafrost (que são solos congelados no hemisfério norte, para saber mais, ver esse post aqui) de mais de 30 mil anos de idade. É importante chamar a atenção de que a presença desses genes de resistência a antibióticos nos ambientes naturais é uma questão se sobrevivência e adaptação dos microrganismos. Não devemos temer isso. O perigo para o ser humano e outros animais é quando esses mecanismos de resistência são “movidos” (em termos genéticos, isso ocorre literalmente) para patógenos. Isso acontece, pois as bactérias tem a capacidade de poder “aproveitar” diretamente o DNA disponível no ambiente, oriundo de células mortas, ou podem trocar pedaços do seu DNA diretamente com outras células. No primeiro caso chamamos esse processo de transformação, no segundo de conjugação. Além disso as bactérias podem ser infectadas por vírus, que são chamados de bacteriófagos, esses muitas vezes carregam pedaços de DNA que contem genes de resistência. O processo pelo qual um microrganismo recebe um fragmento de DNA de outra célula, de um vírus ou do ambiente é chamado de transferência horizontal de genes. Este mecanismo é muito importante para a evolução e ecologia das bactérias.

O entendimento de que as comunidades microbianas naturais podem ser uma fonte diversa para os mecanismos de resistência a antibióticos pode ser uma saída para este grave problema que acomete a humanidade. A partir do próprio ambiente podemos encontrar soluções para esses problemas. Entender que a resistência a antibióticos está num contexto de Saúde Única (em inglês One Health, que engloba aspectos humanos, de animais e ambientes) e deve ser enfrentado de uma maneira holística, é uma grande oportunidade para a descoberta de novas drogas e tratamentos alternativos.

 

Pedro Milet Meirelles

Laboratório de Bioinformática e Ecologia Microbiana

Instituto de Biologia da UFBA

meirelleslab.org

 

Para Saber mais:

Pal, C., Bengtsson-Palme, J., Kristiansson, E. and Larsson, D.J., 2016. The structure and diversity of human, animal and environmental resistomes. Microbiome4(1), p.54.

Van Goethem, M.W., Pierneef, R., Bezuidt, O.K., Van De Peer, Y., Cowan, D.A. and Makhalanyane, T.P., 2018. A reservoir of ‘historical’antibiotic resistance genes in remote pristine Antarctic soils. Microbiome6(1), p.40.

Surette, M.D. and Wright, G.D., 2017. Lessons from the environmental antibiotic resistome. Annual review of microbiology71, pp.309-329.

O despropósito da evolução

Mentes e corpos mecânicos poderiam produzir as paisagens ecológicas luxuriantes que hoje se extinguem lentamente, ou teríamos que ter algo mais criativo na origem e manutenção de uma duradoura organização biológica?

É certo que ainda temos fauna e flora luxuriantes. Apesar desta riqueza real, paira sobre este luxo uma sombra. Uma dúvida aflige aqueles que contemplam a beleza de uma ecologia tão em si mesma entrelaçada, aqueles que percebem a sutileza do delicado arranjo entre predadores, presas, parasitas, hospedeiros, comensais, simbiontes. Uma incerteza sobre a continuidade desta beleza atinge aqueles que tem sensibilidade aguçada para entender a raridade, e mesmo a singularidade deste arranjo ecológico que se tece apenas em milhares de milhões de anos, incerteza face à escalada de crimes ambientais que vivemos aqui e agora, com incêndios na amazônia, óleo lançado às toneladas ao mar aberto, exploração desenfreada de minérios gerando passivos ambientais impagáveis, e impunes. Não deixa de ser curioso pensar que nossa mesma sociedade, ultimamente tão fissurada pela busca de punições para crimes de corrupção, seja ela mesma assim tão permissiva com crimes ambientais hediondos, que têm consequências muito mais devastadoras para a vida como a conhecemos, ou como a queremos.

Darwin era uma destas almas sensíveis que se admirava com a beleza do delicado equilíbrio ecológico. Mais que admirar, ele buscou explicar esta fina relojoaria, esta adaptação minuciosa das espécies umas às outras, e ao ambiente, na ausência de um Deus criador. Sua explicação, como a conhecemos hoje, colocava no acaso a razão de ser desta delicada máquina que constitui o organismo vivo. Deus foi substituído pelos dados, por um jogo de azar no qual vez por outra temos uma boa cartada nas mãos, ou seja, por mutações genéticas que vez por outra são benfazejas, ou seja, são selecionadas pelo ambiente. Assim seria que vez por outra nasce uma ave mutante com um bico mais comprido e afilado, que lhe dá vantagem na obtenção de suas presas escondidas em frestas de troncos e rochas. De onde viria este delicado acoplamento entre o bico, comprido e fino, e sua função (obter presas escondidas em frestas)? Viria do acaso de mutações aleatórias, e não de um Deus benfazejo. Agora, quero que notem um detalhe que ficou obscurecido nesta troca de Deus pelo acaso. Quando imbuídos de uma visão religiosa, interpretamos este acoplamento entre os organismos e o ambiente, entre a forma do bico e sua função, interpretamos todo este delicado entrelaçamento da natureza sobre si mesma como fruto de um plano divino, superior, e neste caso o propósito da vida reside no próprio Deus. O sentido da vida seria louvar ao Criador.

Quando o Deus é substituído pelo acaso, na versão Darwiniana que conhecemos, o que acontece com o sentido da vida? Alguns poderiam responder simplesmente que a vida deixou de ter sentido, que os organismos desconhecem qualquer propósito ou intenção interna a eles, visto que apenas o acaso e a seleção natural externa seriam a fonte de sua delicada organização. Assim, a ligação entre as várias espécies de seres vivos, e mesmo sua ligação com o mundo não vivo, a razão de ser do bico da ave, comprido e afilado, sua função, não estaria na ave em si. A ave apenas funcionaria como um robô inconsciente, uma máquina instintiva que repete automaticamente ações das quais ela mesma desconhece o objetivo. Claro, os seres humanos seriam especiais, eles teriam a cultura, que os permitiria despertar deste sono eterno, desta ignorância bestial de espécies sub-humanas. Animais não humanos seriam como que zumbis, que agem sem saber o porquê. Sua razão de ser não está em si, mas no ambiente que selecionou mutantes aleatórios. Animais têm a forma que têm porque no seu passado evolutivo esta forma lhes foi útil, e não porque hoje ela lhes seria útil, ou porque tenham assim eles mesmo planejado esta utilidade.

Colocado assim, desta forma nua e crua, parece um pouco assustador, não? Nossos cães e gatos, vacas e ovelhas, todos zumbis, e apenas nós ali, isolados, com nossos propósitos e intenções reais, atuais, gerando soluções para o momento de hoje e para o nosso futuro planejado. Tamanho isolamento só dá mesmo para gerar roteiro de filme de terror barato. Mas não é que os zumbis não teriam propósito, apenas eles não saberiam o propósito que possuem. É como se tivessem e, ao mesmo tempo, não tivessem propósito. Confuso, não? Esclareço: nossos animais de estimação nos dariam a impressão de terem propósitos, intenções próprias, mas essa seria uma impressão falsa que caberia à ciência Darwiniana desfazer.

Isto que vocês devem estar sentindo agora, se consegui ser didático o suficiente em meu texto, é o que se chamou de um desencantamento do mundo. O mundo encantado, no qual todos vivem uns para os outros em uma harmonia pré-estabelecida por Deus, e portanto perfeita, este mundo foi substituído por um mundo de zumbis no qual apenas nós humanos podemos ver a luz no fim do túnel. Todos competem uns contra os outros, todos querem uns passar a perna nos outros, buscando tirar proveito do outro para melhorar sua aptidão e vencer no jogo da sobrevivência. Além de gerar um profundo desencanto, esta visão de mundo parece também um tanto quanto arrogante, não é mesmo? A humanidade veio para libertar os pobres zumbis de sua ignorância … mas tem algo de errado neste roteiro porque a humanidade está se comportando mais mesmo é como um exterminador do futuro.

Há muito o que se dizer sobre este estado desencantado do mundo Darwiniano. Primeiro, cabe ressalvar que o próprio Darwin não abraçou este desencanto de peito aberto. Jessica Riskin analisou em detalhe todas as versões de “A origem das espécies”, bem como uma vasta correspondência, e concluiu que Darwin oscilou entre uma visão na qual os animais são imbuídos de propósito, e outra na qual eles são seres passivos, zumbis sem intenções. Nas sucessivas versões de “A origem …”, Darwin oscilou entre uma visão mais Lamarckista na qual os variantes (os mutantes) surgem a partir das atividades espontâneas dos organismos, fruto de sua natural capacidade de ajuste (que serviria a propósitos internos), a uma visão mais parecida com a que temos dele hoje, na qual os variantes surgem por acaso e são selecionados. Assim seria equivocado dizermos que somos Darwinistas ao abraçarmos a zumbilândia como visão de mundo. Darwin, ele mesmo, não se decidiu a este respeito, e cortejou seriamente o principal componente do Lamarckismo: o de que há um motor interno aos organismos (uma motivação, um propósito) que direciona o processo evolutivo. O que houve foi que os neodarwinistas, e principalmente os arquitetos da Síntese Evolutiva Moderna dos anos 1950 (Weissman, Fisher, etc), decidiram por Darwin em favor da zumbilândia.

Outro ponto diz respeito ao alcance do desencanto. Alguns poderiam dizer que a metáfora dos zumbis só serviria para os comportamentos instintivos, que fazemos ‘sem pensar’. Mas os animais não seriam apenas máquinas instintivas: eles também aprenderiam, e seu comportamento aprendido seria consciente. O problema deste argumento é que o próprio processo de aprendizagem, segundo os behavioristas e mesmo os ciberneticistas (que usaram as leis de aprendizagem dos behavioristas para construirem robôs que aprendem), foi concebido como um processo de seleção natural. Como a aprendizagem funcionaria? Nosso sistema nervoso produziria comportamentos aleatórios e um deles, por acaso, seria benéfico para nós mesmos. Este processo de respostas aleatórias sendo selecionadas pelo seu efeito positivo para o organismo constituiria, em teoria, o que chamamos de aprendizagem. Agora vejam, o processo de aprendizagem, assim descrito, não é nada mais nem nada menos que uma réplica do processo de seleção natural ‘proposto por Darwin’, só que em uma escala de tempo diferente. Enquanto a aprendizagem ocorreria no tempo de vida de um indivíduo, a seleção natural ocorreria no tempo de evolução da espécie. Se é assim, a aprendizagem não introduziria propósitos na mente do indivíduo pelo mesmo motivo que a seleção natural não coloca na espécie propósitos próprios, voltados para a sobrevivência futura da espécie. Perceba: a seleção natural colocaria, na verdade, propósitos voltados para o passado da espécie, de modo que os animais de hoje seriam marionetes, ou zumbis, controlados a partir de seu passado evolutivo, que é este sim, ao final, sua razão de ser, seu criador. O mesmo valeria para nossos robôs: o propósito deles estaria em nós, seus criadores, e não neles próprios. Mesmo quando os robôs fossem capazes de aprendizagem, seríamos nós os tutores desta aprendizagem, os criadores das regras de aprendizagem. Assim, o desencanto de um mundo neodarwiniano não atinge apenas insetos e outras máquinas potencialmente instintivas: seu alcance é muito maior, e atinge também todos os animais que aprendem, pois a aprendizagem mimetiza a evolução.

A esta altura, você deve estar se perguntando: mas meu Deus do céu (com perdão do trocadilho): onde está o sentido da vida? Como faço para escapar da zumbilândia? Calma, lembre-se que os humanos podem estar de fora da zumbilândia, dada sua capacidade para a cultura. Embora para alguns isso possa ser suficientemente tranquilizador, para outros, a maioria, creio eu, a sensação de filme de terror barato permanece inalterada, e daí talvez decorra o sucesso deste gênero de filmes. Uma forma possível, e simples, de se escapar da zumbilândia, viria da constatação de que a seleção natural não é a única, nem a primeira, e talvez nem a principal fonte de adaptação. Percebam primeiramente que a zumbilândia invadiu esse mundo teórico por conta da dobradinha entre variação aleatória e seleção natural. Se estes dois processos são os principais responsáveis pela forma e pela mente dos seres vivos atuais, não há muito como fugir da zumbilândia. Mas e se outros processos forem também importantes?

Semana passada vimos aqui no Darwinianas, por exemplo, a importância da herança epigenética. A aptidão dos organismos ao ambiente seria fruto, em momentos críticos de sobrevivência, de informações advindas não dos genes (ou seja, de ancestrais mutações aleatórias), mas de epigenes, ou seja, seriam fruto do ambiente atual. Para além da epigenética, já sabemos há tempos da importância de outros fatores, como construção de nicho e herança ecológica, fatores em nada aleatórios, na evolução das espécies, fatores que introduzem uma participação ativa dos organismos no processo evolutivo. Temos também a evolução cultural, outro processo no qual variantes nada aleatórios são passados para as gerações futuras, processo esse, o cultural, que cada vez mais admitimos estar dirigindo a evolução de muitas espécies de animais não humanos.

Podemos também colocar de outra maneira a resposta a esta questão acerca da origem do propósito, das intenções, deste motor interno dos animais. Parece que o ponto fundamental seria saber se minhas intenções derivam de meu passado (se sou uma marionete do passado evolutivo) ou se elas derivam do momento atual e se projetam para meu futuro. Para um evolucionista a questão da origem é básica, e podemos responder a ele evolutivamente, seguindo as pegadas de um estudo recente de Denis Walsh e de Stuart Newman. Pensando na origem da vida, antes mesmo da evolução dos genes, ou seja, antes da possibilidade de existência de qualquer tipo de evolução neodarwiniana, já devia haver algo como um organismo, um organismo sem sistema de herança. Um bom motivo para isso seria que, para que algo se reproduza, esse algo deve antes de tudo existir: assim, a existência do organismo provavelmente surgiu antes de seu sistema de herança. A homeostase, esta capacidade do organismo de se defender das flutuações do ambiente, deve ter surgido antes dos genes. Se assim for, nós vivos, diferentemente dos zumbis, teríamos uma capacidade de ajuste, voltada para a sobrevivência, que antecederia toda e qualquer capacidade de evolução adaptativa. Este organismo primordial teria já um propósito, de sobrevivência básica, de permanência no mundo através de ajustes a mudanças ambientais, antes mesmo de poder ser controlado como uma marionete por seu inexistente passado evolutivo. A homeostase seria a plasticidade, esta capacidade de ajuste que indica a existência de uma meta a ser alcançada, de um alvo a ser defendido, um propósito para a existência, e esta capacidade não viria, no início, dos genes: ela seria uma propriedade emergente da organização original da matéria viva. O propósito seria uma propriedade original interna à matéria viva, ele não seria originalmente imposto à matéria passiva por fora, por pressões seletivas extrínsecas.

Temos assim esperança na existência de um mundo sem zumbis: talvez Darwin estivesse afinal justificado em ter dúvidas. Talvez a evolução seja um processo mais elaborado que a Síntese Evolutiva Moderna imaginou, um processo que permita, afinal, que a vida tenha ela mesma um sentido próprio. Talvez uma teoria evolutiva assim mais completa permita que deixemos de ser marionetes não só de deuses, mas que deixemos de ser marionetes também de nosso passado evolutivo ou ontogenético. Talvez uma teoria evolutiva mais completa permita que sejamos donos de nosso próprio nariz e capazes, afinal, de dar um sentido próprio a nossas próprias vidas.

 

Hilton F. Japyassú

Universidade Federal da Bahia

 

Para saber mais

Walsh, D.M. 2017. Chance caught on the wing. In: Huneman, P. & Walsh, DM. (2017). Challenging the modern synthesis: adaptation, development, and inheritance. Oxford: Oxford University Press.

Riskin, J. 2016. The restless clock: a history of the centuries-long argument over what makes living things tick. The University of Chicago Press.

Newman, S.A. 2017. Toward a Nonidealist Evolutionary Synthesis. In: Huneman, P. & Walsh, DM. (2017). Challenging the modern synthesis: adaptation, development, and inheritance. Oxford: Oxford University Press.

Imagem de abertura: https://www.wallpapervortex.com/wallpaper-46510_steampunk_mechanical_bug.html#.XdPq0S2ZPUI

Fantasmas de Lamarck

A herança de caracteres adquiridos, por muito tempo uma ideia quase herética, hoje tem extenso apoio. Mas ao contrário do que pode parecer, isso não implica uma ressurreição das ideias de Lamarck.

Todos nós já ouvimos falar de Jean-Baptiste Lamarck, o naturalista francês que tem a duvidosa honra de ocupar as páginas iniciais de capítulos de livros-texto de biologia para ser usado como um exemplo do pensamento evolutivo “errado”. A figura recorrente é a das girafas que seriam, de acordo com o retrato de Lamarck feito nos livros, detentoras de um grande pescoço por constantemente se esforçarem para alcançar as folhas mais altas até que, eventualmente, essa modificação seria transmitida para suas proles, que já nasceriam de pescoços compridos. Lamarck seria, portanto, o proponente de que a evolução ocorre através da herança dos caracteres adquiridos.

Vamos reexaminar as ideias de Lamarck, considerando com mais atenção o contexto em que suas ideias foram originalmente apresentadas. Sugiro pensar em três grandes temas. Em primeiro lugar, Lamarck era um defensor da ideia de que as espécies sofrem transformações ao longo do tempo. O próprio Darwin reconheceu a importância de Lamarck como alguém que trouxe explicações naturais para a diversidade de formas de vida na terra. Em segundo lugar, Lamarck não via a herança dos caracteres adquiridos como único ou sequer principal processo de mudança evolutiva. Para ele, haveria um complexo processo de mudança ocorrendo, em que espécies ser tornariam progressivamente mais complexas, em grande parte em função de pressões do ambiente, que criariam necessidades que elas teriam que superar. Essa transformação rumo a uma maior complexidade se daria a partir de um suprimento de espécies “simples”, originadas por um processo de geração espontânea. Como todas as espécies estavam conectadas entre si através dessas transformações, Lamarck não acreditava que ocorressem extinções, apenas transformações. Em terceiro e último lugar, e talvez o mais conhecido, Lamarck achava que mudanças no uso e desuso de estruturas gerava modificações nos corpos que eram transmitidas à prole. O pescoço da girafa seria um exemplo.

Qual o status das ideias de Lamarck nos dias de hoje? A primeira ideia (as espécies se transformam) está viva e forte: temos múltiplas evidências de que as espécies não são fixas e mudam ao longo do tempo. A segunda ideia (a respeito da forma como se dá a mudança) foi fortemente rejeitada: não acreditamos que a origem da vida ocorra de modo recorrente, que haja uma tendência inexorável de aumento de complexidade, ou ainda que extinções não ocorram. Nossa visão de processos evolutivos é muito diferente daquela defendida por Lamarck. Por fim, chegamos à terceira ideia Lamarckiana: a da herança de caracteres adquiridos. Essa ideia teria sido originalmente refutada pelo embriologista alemão August Weissman (1834-1914), num notório experimento, ao menos aos olhos de gerações de livros didáticos: ele cortou as caudas de camundongos, cruzou-os, e observou que os filhotes da próxima geração sempre nasciam com caudas, independentemente de ela ter sido removida em seus pais. Dessa forma, Weissman afirmava ter rejeitado a herança de caracteres adquiridos. Os livros-texto de hoje repetem essa afirmação, desde a educação básica até o ensino superior. Causa estranheza, então, que a herança de caracteres adquiridos tenha sido defendida, por cientistas respeitáveis, até a primeira metade do século XX. Não teriam eles lidos Weismann? Como mostra o historiador da ciência Peter Bowler, Weismann foi lido e seu experimento descartado por envolver mutilação dos camundongos, e não os processos de mudanças de hábitos em resposta a pressões do ambiente que levavam, para os neolamarckistas de então, ao uso e desuso de determinadas estruturas e à herança de caracteres adquiridos. Como costuma ocorrer em muitos casos históricos como retratados por livros didáticos, o experimento que é apresentado como crucial não foi de fato tão crucial no contexto em que efetivamente ocorreu.

Eis que, nos dias de hoje, nossa posição sobre a herança de caracteres adquiridos mudou. Se por um lado não vemos camundongos com caudas mutiladas nascendo de mães com caudas similarmente mutiladas, há outros exemplos bem apoiados de herança de características adquiridas. Uma lista extensa foi compilada por Eva Jablonka e Marion Lamb em seu livro “Evolução em quatro dimensões”. Pulgas d’água adquirem espinhos quando expostas a predadores, e passam tais espinhos a sua prole; filhos de homens que começaram a fumar antes dos onze anos de idade têm filhos mais pesados do que aqueles que começaram a fumar mais tarde; netos de homens que tiveram alimentação excessiva na infância têm chances aumentadas de desenvolver diabetes (temas comentados aqui). Em todos esses casos, algum aspecto de como um indivíduo interagiu com o ambiente resultou numa alteração transmitida à prole.

Hoje em dia compreendemos melhor os mecanismos por trás de diferentes modos de herança não-genética. Uma classe em particular tem atraído intenso estudo, as modificações epigenéticas. Estas são definidas como mudanças que ocorrem no genoma, mas não envolvem alterações em sequências de DNA. Mecanismos de modificação epigenética incluem a adição ou remoção de “etiquetas químicas” das moléculas de DNA, que modulam a atividade associada a estas moléculas. Por exemplo, grupos metila (CH3), quando acrescentados a uma sequência de DNA, tipicamente reduzem a transcrição (isto é, a síntese de moléculas de RNA). Já o acréscimo de grupos de acetila (COCH3) às histonas, proteínas responsáveis pelo empacotamento do DNA em cromossomos, frequentemente levam a um aumento na taxa de transcrição. A incorporação desses grupos químicos é afetada por uma ampla gama de experiências de vida, envolvendo desde aquilo que comemos a até mesmo a ocorrência experiências traumáticas. Assim, o alimento ingerido pode gerar marcas no genoma que podem ser transmitidas à prole, influenciando a forma como seu genoma funciona. Eis um exemplo da herança de características adquiridas.

Há também outras formas de herança não-genética. Um mecanismo tratado anteriormente no Darwinianas diz respeito a pequenos vermes que habitam a genitália de besouros que, quando transmitidos à prole, alteram a forma como se dá o desenvolvimento desses animais. O contato do besouro com o verme altera aspectos fisiológicos, e essa alteração é transmitida à prole, através dos vermes.

Em conjunto, podemos dizer que a noção de que a herança de características adquiridas pode ocorrer e não é mais controversa. Diante dessas descobertas, um grande número de jornais e revistas rapidamente anunciam que, afinal de contas, Lamarck estava certo.

Será mesmo?

Como já tratamos anteriormente neste blog, ao comentar a extensa divulgação na mídia de que um filósofo muçulmano teria descoberto a teoria de Darwin mil anos antes do naturalista inglês, é fundamental analisarmos achados científicos em seu contexto, e inspecionarmos criticamente de que formas as contribuições de um cientista se sustentam.

Lamarck de fato incluiu a herança das características adquiridas no seu rol de mecanismos que levam a mudanças evolutivas. Mas, para ele, o papel da herança de características adquiridas era secundário. Mais do que isso, esta não era uma ideia original dele, e tampouco foi algo que ele defendeu com muito afinco. Afinal, era uma ideia aceita quase consensualmente em sua época. Aliás, Darwin, diante de sua própria dificuldade de explicar os mecanismos de herança, também recorreu à influência do ambiente sobre características hereditárias. Podemos então afirmar: os achados de modos de herança não-genéticos, e a epigenética em particular, abrem um novo e fascinante capítulo sobre como os organismos funcionam e transmitem traços, mas não configuram algo que poderemos chamar de um processo lamarckiano. Ao identificar como lamarckianos todos processos que envolvem a herança de características adquiridas, estamos pegando uma parte menor do pensamento de um grande naturalista e dando a ela uma ênfase exagerada.

Remeter os novos achados da epigenética a Lamarck constitui mais do que um deslize terminológico, ou uma imprecisão conceitual. A meu ver, o mau emprego do termo “Lamarckismo” pode reforçar conceitos incorretos sobre o papel da epigenética no processo evolutivo. Lamarck nos ofereceu uma teoria sobre como se dá a mudança evolutiva. Se dissermos que os achados epigenéticos reabilitam o seu pensamento, estamos essencialmente colocando em xeque ideias darwinistas, e sugerindo que Lamarck talvez estivesse certo. Mas isso seria tomar a parte pelo todo. A herança de características adquiridas, tão ricamente documentada nos dias de hoje, não constitui uma nova teoria evolutiva. Ela deve ser vista como um dos mecanismos que explica como os organismos funcionam, nos lembrando que há processos fundamentais para explicar a herança, além daqueles que envolvem a transcrição e tradução de sequências de DNA.

Há também uma importante limitação da herança epigenética como processo de herança capaz de ter grande importância evolutiva. Marcações epigenéticas raramente são duradouras. Uma sequência de DNA metilada, por exemplo, pode ser transmitida nessa condição por duas ou três gerações, mas depois disso as marcas são geralmente removidas. Vê-se que as mudanças epigenéticas não são capazes de explicar a transmissão de traços entre ancestrais e descendentes por um imenso número de gerações, como seria esperado de uma teoria evolutiva.

Este é um bom momento para lembrar que o DNA sozinho também não define porque um organismo é do jeito que ele é. Sem estímulos ambientais, sem ácidos nucleicos armazenados no interior do óvulo, sem sinalização bioquímica apropriada, o DNA seria incapaz de contribuir para formar um ser complexo. De modo similar, marcações epigenéticas dependem da presença de proteínas codificadas pelo DNA para poderem atuar. Os mecanismos de herança genético e epigenético não são formas alternativas, mas duas camadas conectadas de processos bioquímicos que contribuem para o funcionamento das células e para a herança.

Essa estreita e complexa associação de duas camadas de herança é admiravelmente bem explicada como um produto da seleção natural, processo responsável pela origem de muitos dos sistemas bioquímicos dos seres vivos. Visto dessa forma, a existência de mecanismos da herança de caracteres adquiridos não representa um golpe no darwinismo e tampouco o triunfo do lamarckismo. Representa a descoberta de mecanismos compreensíveis à luz da teoria da evolução por seleção natural. Assim como a seleção natural moldou os processos de replicação, transcrição e tradução de ácidos nucleicos, ela também ajuda a entender porque existem marcações epigenéticas em moléculas de DNA.

Então da próxima vez que alguém invocar o nome da Lamarck junto com a descrição de um mecanismo de herança não-genética, seja cético. Lamarck merece ser celebrado pela sua contribuição como defensor da ideia de que a evolução ocorre e primeiro proponente de uma teoria para explicá-la.  Entretanto, fenômenos epigenéticos não sustentam a teoria que ele propôs para a mudança evolutiva, e tampouco refutam as ideias darwinistas.

 

Diogo Meyer

(Universidade de São Paulo)

 

Para saber mais:

Diogo Meyer e Charbel El-Hani. Evolução, o sentido da biologia. UNESP, 2005.

Burkhardt RW Jr. Lamarck, evolution, and the inheritance of acquired characters. Genetics. 2013;194(4):793–805. doi:10.1534/genetics.113.151852

Eva Jablonka e Marion Lamb. 2010. Evolução em Quatro Dimensões. Companhia das Letras.

As plantas e os seus mil e um transcriptomas

Cientistas publicam o resultado do sequenciamento de mais de 1.000 transcriptomas de plantas de diferentes linhagens evolutivas. Mas e daí?

Nessa última semana, a revista Nature publicou o resultado de um esforço multinacional de sequenciamento do  transcriptoma de 1.124  espécies de algas e plantas terrestres. Essa iniciativa é parte do projeto 1000 Plant Genomes, também conhecido como 1KP, um amplo projeto dedicado à compreensão da história evolutiva das plantas. Esse artigo é, sem dúvida, o estudo sobre evolução das plantas (ou do grupo tecnicamente chamado de Viridiplantae) mais amplo já realizado, tanto em termos de amostragem quanto em termos da quantidade de dados analisada.

Mas, o que aprendemos com essa quantidade gigantesca de dados?

Nesse artigo, os cientistas do 1KP revisam as principais relações evolutivas entre algas e plantas terrestres, entre os principais grupos de gimnospermas, assim como sua relação com as angiospermas, e as relações evolutivas entre as principais linhagens de plantas com flores, a partir da comparação de mais de 400 genes extraídos dos milhares de transcriptomas analisados. Um resumo das relações entre as principais linhagens evolutivas está apresentado na Figura 1 abaixo.

ana.png
Figura 1 – As principais relações evolutivas entre as diversas linhagens de plantas, baseadas na análise de 410 genes extraídos dos vários transcriptomas analisados pelo 1KP. Em vermelho, o grupo das plantas com flores, o grupo de maior diversidade de espécies de plantas. As relações que já haviam sido anteriormente propostas ganharam mais robustez a partir do grande conjunto de dados analisados. (Fonte: Modificada da Fig. 2 da publicação do 1KP).

Curiosamente, e a despeito da quantidade gigantesca de dados analisados, os cientistas foram cautelosos ao apresentar os resultados das análises filogenéticas, pois em muitos dos casos as várias abordagens apresentaram resultados conflitantes, particularmente em relação a divergências entre genes nucleares e dos cloroplastos.

De maneira geral, muitas das relações apresentadas na Figura 1 – assim como muitas das suas incertezas – já eram anteriormente conhecidas pela comunidade científica. Por exemplo, uma das principais questões na evolução das plantas diz respeito à linhagem de algas mais proximamente relacionada às plantas terrestres. Dois cenários despontam como igualmente possíveis no presente estudo: (i) as plantas terrestres são mais relacionadas às algas Zygnematophyceae; ou (ii) as plantas terrestres são igualmente relacionadas às algas Zygnematophyceae e Coleochaetales. Ambas as linhagens, juntamente com outras linhagens de algas e plantas terrestres, compõem o grupo das Streptophyta. Desde pelo menos 2012 essas relações já haviam sido postuladas.

Um outro exemplo refere-se à relação entre as linhagens de briófitas (os musgos, hepáticas e antóceros), assim como à relação entre elas e a plantas vasculares, que não foram completamente resolvidas pelo estudo. Enquanto os genes de cloroplastos sugeriram que as linhagens de briófitas são mais relacionadas entre si e igualmente relacionadas às plantas vasculares, a análise de todos os dados em conjunto – incluindo genes nucleares – sugeriu que os musgos e as hepáticas são mais relacionados às plantas vasculares do que aos antóceros.

Os cientistas do 1KP foram capazes também de identificar 244 eventos de duplicação de genoma completo (do inglês whole genome duplication, WGD), 65 dos quais já haviam sido anteriormente identificados em projetos específicos de sequenciamento de genomas (Figura 2). Desses eventos de duplicação de genoma completo, o estudo identificou pelo menos um evento em cada uma das linhagens de plantas terrestres estudadas. Dentre as plantas terrestres, as samambaias apresentaram a maior frequência de duplicações de genoma, condizente com os elevados números de cromossomos encontrados nessas espécies de plantas. Ainda, diversos eventos de duplicação de genoma completo foram identificados nas linhagens de plantas com flores.  Em contraste ao observado nas plantas terrestres, a maioria das linhagens de algas estudadas não apresentou evidência de duplicações de genoma completo. Curiosamente, as Zygnematophyceae, um dos grupos de algas mais proximamente relacionado às plantas terrestres, exibiu a maior densidade de duplicações de genoma completo, dentre todas as linhagens de algas estudadas.

ana2.png
Figura 2 – Estimativa do número de duplicações de genomas completos ao longo da evolução das plantas. Em vermelho, à esquerda, os eventos de duplicação de genoma completo na árvore filogenética dos principais grupos de plantas. À direita, o número médio de duplicações de genoma completo nas linhagens analisadas. (Fonte: Modificada da Fig. 4 da publicação do 1KP).

Apesar de duplicações de genoma completo serem eventos frequentes na evolução das plantas terrestres, as implicações desse fenômeno para a diversificação das linhagens de plantas ainda são desconhecidas. Os cientistas do 1KP foram cuidadosos em esclarecer que não foi observada uma correlação clara entre os eventos de duplicação de genoma completo e um aumento imediato no número de espécies pós-duplicação. Não sabemos também se há, de fato, uma correlação entre eventos de duplicação completa de genoma e o surgimento de características supostamente adaptativas nas diversas linhagens de plantas. Há mais de 20 anos, eventos de duplicações de genoma completo foram postulados como importantes processos envolvidos na origem de novidades evolutivas em diversas linhagens de plantas. A lógica por trás dessa ideia baseia-se no fato de que esses eventos são capazes de gerar um excedente de material genético, relativamente disponível e capaz de, através do acúmulo de mutações, originar novos genes ou novas famílias gênicas, resultando assim no surgimento de novas características. Um exemplo de tal correlação ocorre, por exemplo, na origem evolutiva das plantas com flores. Cientistas consideram que os dois eventos de duplicação de genoma completo que precederam a evolução das plantas com flores foram cruciais para o surgimento de novos genes envolvidos na regulação e no desenvolvimento de características específicas desse grupo.

Mas seriam essas descobertas novas?

O advento de novas tecnologias de sequenciamento de DNA tem proporcionado um avanço significativo nas descobertas das bases genéticas de diversos processos biológicos. Tem permitido também a geração de uma tremenda quantidade de dados que, muitas vezes, sem um arcabouço teórico claro, acabam por não servir a um propósito muito claro no desenvolvimento do conhecimento científico.  O 1KP é, na verdade, um guarda-chuva para diversos subprojetos, espalhados em laboratórios de todo o mundo, cada qual com interesses particulares em diferentes linhagens de plantas. Esses subprojetos já realizaram importantes contribuições para o entendimento de vários aspectos da evolução das plantas, como, por exemplo, o entendimento da comunicação entre cloroplasto e núcleo, da evolução de vias metabólicas de variados compostos secundários, da origem e evolução dos mecanismos de resposta à auxina (um dos principais hormônios em plantas), dentre outras contribuições. A lista de publicações associadas aos subprojetos do 1KP pode ser encontrada aqui. Mas, a publicação da análise dos mais de mil transcriptomas das plantas em si pouco trouxe de novidade para a comunidade científica. Talvez o maior benefício desse esforço esteja na disponibilização gratuita desses. Com perguntas mais focadas, assim como aquelas realizadas no âmbito dos subprojetos, cientistas possivelmente serão capazes de estudar as implicações dos eventos duplicações de genoma completo, tão prevalentes na história evolutiva das plantas terrestres e ainda tão misteriosos.

Curiosamente, pensar nos mais de mil transcriptomas do 1KP me remeteu aos famosos contos árabes “As Mil e Uma Noites”, talvez pelo fato de ambos tratarem de uma quantidade semelhante de coisas: enquanto os contos árabes narraram eventos de mil e uma noites entre o rei Xariar e sua esposa Xerazade, o 1KP sequenciou “mil e tantos” transcriptomas das mais variadas espécies de plantas.  “As Mil e Uma Noites” é o título dado a um conjunto de histórias de várias origens, incluindo o folclore árabe, persa e indiano.  Não há uma versão definitiva da obra, pois diferentes edições divergem no número e conjunto de contos incluídos. No entanto, o eixo principal de todas as versões está organizado em torno das diversas histórias narradas, mas nunca concluídas, por Xerazade, esposa do rei Xariar, no intuito de escapar à sua quase inevitável execução.

De forma semelhante, o 1KP é constituído por um conjunto de subprojetos, cada qual contando uma história particular da evolução de um determinado grupo de plantas. Porém, no caso de “As Mil e Uma Noites”, os contos isoladamente têm, talvez, menor importância do que o conjunto da obra: cada conto é parte de uma longa história, cujo resultado final permite que Xerazade, após mil e uma noites, escape do seu destino fatal. Já no caso do 1KP, o valor parece estar nas contribuições isoladas de cada subprojeto, mais do que no conjunto da obra, pois essa não trouxe nada de muito novo, mas sobretudo deu mais suporte ao que já sabíamos anteriormente. Talvez falte ao 1KP um fio condutor, tal qual o de “As Mil e Uma Noites”, capaz de gerar interesse suficiente para manter-se vivo a longo prazo e resolver de fato as principais questões da história evolutiva das plantas.

Ana Almeida

California State University East Bay (CSUEB)

 

Para saber mais:

Carpenter E.J. et al. 2019. Access to RNA-sequencing data from 1,173 plant species: The 1000 Plant transcriptomes initiative (1KP). GigaScience 8: giz126.

Morris, J.L. et al. The timescale of early plant evolution. 2018. PNAS, 115: E2274-E2283.

Ruhfel, B.R. et al. 2014. From algae to angiosperms–inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evolutionary Biology, 14: 23.

Soltis, P.S.; Folk, R.A.; Soltis, D.E. 2019. Darwin Review: angiosperm phylogeny and evolutionary radiations. Proc. R. Soc. B, 286: 0190099.

Soltis, P.S. et al. 2015. Polyploidy and genome evolution in plants. Current Opinion in Genetics & Development, 35: 119-125.