Um dos livros que usei no meu segundo ano de graduação, quando já me arrisquei numa disciplina optativa avançada de Biologia Molecular, foi o clássico Molecular Biology of the Gene, que tem James Watson como um dos autores. Esse livro servia de espinha dorsal para uma disciplina oferecida pelo professor Carlos Menck. Atualizado, bem ilustrado e escrito por uma equipe que representava a nata da biologia molecular, era a fonte mais completa para o assunto. Ao longo das aulas cobríamos o seu conteúdo, discutindo passo-a-passo os experimentos seminais da biologia molecular, os mecanismos biológicos sob ótica molecular, e os desafios que o futuro poderia trazer.
Entretanto, o processo de ler e discutir o livro ofereceu um aprendizado que ia muito além de suas páginas, e que eu não antecipava quando comecei o curso. Em várias ocasiões, ao ler um trecho ou examinar uma figura, a discussão liderada pelo Menck colocava em xeque algo que o livro afirmava. Ora era a interpretação de um experimento, em outras ocasiões surgia um certo ceticismo sobre a descrição de uma imagem, em outras era uma ressalva à ênfase seletiva em alguns achados, em detrimento de outros. Ali, pela primeira vez na minha vida de estudante, eu tomava contato com o fato de que o que estava escrito num livro texto (e, nesse caso, de autoria de um prêmio Nobel!) podia ser desafiado, discutido, questionado. Aprendia que no estudo das ciências, mesmo diante dos livros mais respeitados, não precisávamos aceitar como autoridade inquestionável o que nos era apresentado. Isso, para mim, foi um divisor de águas. Como aluno, eu teria que ter algum grau de protagonismo no processo de aprendizado, deveria me posicionar criticamente sobre aquilo que lia.
Questionando o autor
Alguns anos mais tarde, já durante meu doutorado na Universidade da Califórnia, em Berkeley nos Estados Unidos, tive uma nova experiência marcante. Junto com alguns colegas havia lido um livro provocativo, de autoria do matemático e biólogo teórico Brian Goodwin (1931-2009). Tratava-se de How the Leopard Changed its Spots, no qual Goodwin argumentava que a ênfase excessiva nos processos de seleção natural deixava de contemplar a importância das leis da física no processo evolutivo. Para Goodwin, as leis que regem a interação entre moléculas e explicam como elas se difundem no espaço são essenciais para entender o processo de transformação dos seres vivos. Para ele, os organismos possuem suas formas atuais em função daquilo que as leis da física permitem, e não como consequência da ação da seleção natural. Na época achei essas ideias interessantes, mas me pareceu que relegar a seleção natural a um segundo plano, e tentar explicar o processo de adaptação com referência apenas a leis físicas era difícil de aceitar. Me parecia que uma ideia importante (a de que leis físicas têm um espaço importante a ocupar em teorias evolutivas) estava sendo levada longe demais.
Por uma feliz coincidência Goodwin visitou Berkeley nessa época, e os alunos marcaram uma reunião informal com ele, durante a qual poderíamos conversar sobre os seus trabalhos e ideias científicas em geral. Fui para a conversa munido de minhas críticas à forma como ele havia escanteado –- a meu ver, desnecessariamente— a seleção natural através de sua visão de transformação evolutiva regida por leis físicas. Para minha surpresa, encontrei um cientista muito mais afável e maleável do que a leitura do seu livro indicava. Se nas páginas escritas ele era enfático quanto à importância de desafiar a seleção natural, na conversa ele mostrou uma face conciliadora. Diante de minhas perguntas, ele sorriu amigavelmente e explicou que na hora de escrever o livro era importante “carregar um pouco nas tintas” para dar mais ênfase à sua mensagem, mas que ele certamente achava promissora uma teoria com espaço tanto para as leis da física, quanto para o processo de seleção natural. Ali, experimentei um novo divisor de águas. Vi que as ideias de um cientista se misturavam ao estilo que ele usava para persuadir seus leitores. Vi um exemplo de que o que está na página impressa é apenas uma face das ideias que um cientistas desenvolve, e uma face com vieses e — nesse caso pelo menos— alguma dose de exagero. Novamente, concluí que o protagonismo cabia ao leitor. O livro não “falava por si”, tinha que ter seu conteúdo filtrado, avaliado criticamente.
Alunos conversam com cientistas
Encerro meus relatos compartilhando uma experiência recente, realizada este ano na disciplina optativa que ministro na USP, chamada Genética Evolutiva. O curso teve como foco a modelagem de processos evolutivos, e nele discutimos as forças que moldam a variabilidade genética em populações. Entre os temas está como características como taxas de reprodução e tamanho dos gametas influenciam a diversidade genética (algo previamente abordado neste blog). Esse assunto foi abordado usando um artigo de autoria de Jonathan Romiguier, atualmente na Universidade de Lausanne. Também abordamos um outro processo que modula a diversidade genética, que é a seleção natural. Esse tema foi abordado usando um artigo de Tim Sackton, atualmente na Universidade de Harvard, que mostra que quando a seleção favorece uma mutação numa região do genoma, ocorre uma homogeneização na população não só no sítio selecionado, mas também em regiões vizinhas do genoma (num processo chamado carona genética, previamente discutido neste blog).
Os temas são desafiadores, e representam questões ainda em aberto, foco de muitos debates. Os artigos também trazem desafios, com tratamentos matemáticos sofisticados. Frente a isso propus embarcamos numa atividade pedagógica diferente. A minha ideia era dar aos alunos uma oportunidade para se dirigirem diretamente aos autores dos artigos que tínhamos lido, apresentando perguntas e ideias. Após entrar em contato com os dois autores (Tim Sackton e Jonathan Romiguier), acertei com eles uma data para que os alunos enviassem perguntas sobre os artigos. Os dois autores se comprometeram a enviar respostas às questões por escrito, num prazo compatível com a duração do curso.
Para a maioria dos alunos, era a primeira disciplina que os colocavam em contato com a literatura primária. Além disso, os artigos haviam gerado uma grande quantidade de perguntas, tanto referente à compreensão do que era apresentado, como em relação às implicações dos achados relatados. Assim, a oportunidade de interagir diretamente com os autores era promissora.
O trabalho envolveu algumas etapas. Primeiro, os alunos se reuniram em grupos e propuseram duas perguntas para cada artigo. A seguir, eu me reuni com os grupos e discuti as perguntas, revisando a redação (em inglês), a precisão conceitual e a relevância. Desse processo chegamos a oito perguntas para cada autor, que foram enviadas. Três semanas depois, recebemos as respostas. Uma aula inteira foi dedicada à discussão de cada uma delas, com os grupos que haviam formulado a pergunta sendo responsáveis por comentar a respostas recebidas. Finalmente, na avaliação da disciplina, propus uma investigação da literatura baseada em alguma ideia que tinha sido levantada pela troca com os autores.
E o que aprendemos nesse processo
Primeiro, vimos que o processo de elaborar uma pergunta precisa sobre um trabalho científico é algo imensamente desafiador. Requer domínio do trabalho em questão, do contexto teórico em que ele se insere, e da detecção de um tema que ficou “em aberto”. Propor uma pergunta que será lida pelo autor é muito mais difícil do que simplesmente discutir o texto ou levantar críticas sem o desafio de compartilhá-las. Criticar textos que lemos é desejável, mas não é fácil.
Em segundo lugar, o trabalho científico pôde ganhar uma nova vida. No caso do Tim Sackton, por exemplo, ele nos contou como nasceu a ideia original do trabalho (motivado por um outro estudo, que havia mostrado que a variação genética é surpreendente homogênea entre os mais variados seres vivos). Enxergamos um pouco mais sobre o que levou aqueles pesquisadores a se lançarem naqueles projetos, na medida em que eles explicitaram, nas respostas às perguntas, as questões que os moviam.
Em terceiro lugar, a troca permitiu lançar um olhar sobre como a ciência é feita. Jonathan Romiguier, frente a questões sobre a relação entre taxas de especiação e diversidade genética, admitiu que essa é uma “hipótese comum, mas que eu pessoalmente não vejo apoiada…” para então elencar as razões. Ele diagnosticava uma visão predominante, abria espaço para sua opinião pessoal, para então explorá-la. Diante dos olhos dos alunos um debate atual ganhou vida, não filtrado por um livro texto, mas expresso nas palavras de um pesquisador que manifesta seu ceticismo sobre uma ideia estabelecida e indica caminhos futuros. É assim que a ciência é feita, mas nem sempre isso transparece nos livros ou artigos.
Em quarto lugar, os alunos puderam perceber que estão mais próximos de fazer contribuições científicas do que poderiam imaginar. Por exemplo, para algumas questões os autores iniciam suas respostas dizendo que “há de fato outros grupos trabalhando nessa questão”, e outras eles admitem “ser uma questão interessante”, para então ponderar os desafios necessários para levá-las adiante. Ficava claro que os alunos haviam assumido um protaganismo científico, identificando questões em aberto e propondo estratégias para abordá-las. O comentário de um especialista servia para mostrar que os alunos já estavam numa posição de participar do diálogo de um modo informado, e não se restringir à posição de leitor do conteúdo gerado, sem ter nada a oferecer em troca.
Esses três relatos captam diferentes momentos da minha vida: como aluno de graduação, doutorando e professor. Todos têm um elemento central em comum: o aprendizado de que em ciência –assim como em outros aspectos de nossas vidas– a construção do conhecimento é uma atividade humana, falível e sujeita a idas e vindas, debates e críticas. Compreender isso nos coloca um pouco mais próximos de sermos agentes do processo que gera conhecimento.
Diogo Meyer (USP)
Para saber mais:
Os artigos que os alunos leram e discutiram com os autores foram:
R.B. Corbett-Detig, D.L. Hartl, T.B. Sackton, Natural Selection Constrains Neutral Diversity across A Wide Range of Species, PLoS Biol. 13 (2015) 1–25.
J. Romiguier, P. Gayral, M. Ballenghien, a. Bernard, V. Cahais, a. Chenuil, Y. Chiari, R. Dernat, L. Duret, N. Faivre, E. Loire, J.M. Lourenco, B. Nabholz, C. Roux, G. Tsagkogeorga, a. a.-T. Weber, L. a. Weinert, K. Belkhir, N. Bierne, S. Glémin, N. Galtier, Comparative population genomics in animals uncovers the determinants of genetic diversity, Nature. 515 (2014) 261–263
Imagem de abertura: Gabriel Sainz
Curtir isso:
Curtir Carregando...