A origem de novos vírus: A COVID-19 e outras histórias

Assim como muitos outros vírus, estudo recente aponta que o vírus causador da COVID-19 evoluiu a partir de um hospedeiro animal e não de manipulação humana intencional.

Escrevo esse post da minha casa, em São Francisco (Califórnia), onde desde o inicio da semana passada o governo decretou quarentena para todos os moradores. Sei que muitos de vocês, leitores, estão em uma situação parecida: em casa, sem poder ir ao trabalho, a bares e restaurantes ou ao cinema, e com filhas e filhos sem aulas presenciais, demandando nossa atenção e nosso cuidado a todo minuto. Apesar de tentar estabelecer uma nova rotina, é inegável que a situação atual gera apreensão e desconforto. Então, saiba que você não está sozinha ou sozinho nesse momento: o mundo todo está vivendo essa mesma angústia. Mas, nunca é demais reforçar que as medidas de isolamento social que tomamos hoje, por mais duras que possam parecer, salvarão a vida de muitos nos próximos meses. E que é extremamente necessário, talvez mais do que nunca, ouvirmos os cientistas e seguirmos suas recomendações. Voltarei a esse ponto ao final do texto.

Primeiro, vamos dar “nome aos bois”. Ao estudar em detalhe esse novo vírus e compará-lo a outros vírus já conhecidos, o Grupo de Estudos de Coronaviridae do Comitê Internacional de Taxonomia de Vírus, entidade mundial responsável pela classificação dos vírus, decidiu nomear essa nova espécie viral de SARS-CoV-2, devido à semelhança genética entre esse novo vírus e aquele causador da Síndrome Respiratória Aguda Grave (SARS). E se olharmos com um pouco mais de cuidado, o nome faz muito sentido:  SARS vem do nome da manifestação clínica causada pelo vírus, CoV indica que esse vírus é um coronavírus, e 2 pois já conhecemos um outro coronavírus, causador da pandemia de SARS em 2003, cujo quadro clínico é semelhante ao que observamos nos pacientes de COVID-19 de hoje. E de onde vem o nome COVID-19? Em Fevereiro desse ano, a Organização Mundial de Saúde (OMS) decidiu nomear a doença de COVID-19, seguindo os acordos internacionais estabelecidos entre a OMS e outros órgãos internacionais. E essa escolha também faz sentido: COVI de coronarus, D de doença (ou disease em inglês) e 19 do ano de 2019, ano em que o primeiro caso de COVID-19 foi identificado.

Mas antes de nos debruçarmos sobre a origem do SARS-CoV-2, como sugere o título desse post, vale lembrar que vírus são partículas compostas majoritariamente por dois tipos de moléculas: ácidos nucleicos (DNA ou RNA) e proteínas. Alguns vírus possuem também um envelope de lipídios, como no caso do coronavírus (Figura 1).

Figura_1
Figura 1 – Ultra-estrutura do SARS-CoV-2. Os coronavírus são vírus de RNA cujo envelope lipídico possui numerosos “espinhos” (do inglês spikes), dando a impressão de uma “coroa” quando vistos sob microscópio eletrônico (veja também a imagem de abertura desse post). Daí vem o nome desse grupo de vírus, os coronavírus. Fonte: Imagem modificada de Alissa Eckert, Dan Higgins; Jan 2020 (Center for Disease Control, CDC).

Vírus são agente infecciosos, causadores de milhares de doenças em animais, plantas, fungos e bactérias. Conhecemos hoje mais de 200 mil tipos diferentes de vírus, e o número de novas espécies virais continua a crescer significativamente todo ano. Os vírus são considerados parasitas intracelulares obrigatórios, pois apesar de inertes quando fora de células vivas, um único vírus é capaz de cooptar o metabolismo celular para a produção de milhares de novas partículas virais em poucas horas. Nos últimos meses, cientistas têm estudado intensamente o SARS-CoV-2, não apenas para entender sua origem como também em busca de um caminho para o desenvolvimento de uma vacina ou de um tratamento eficaz, e desde o início do ano centenas de artigos já foram publicados. Assim, já conhecemos o suficiente do SARS-CoV-2 para afirmar com convicção que, até o momento, não existe qualquer evidência sugerindo que o SARS-CoV-2 é fruto de manipulação humana intencional. Na realidade, os dados apontam para um processo evolutivo por seleção natural, resultando na transferência zoonótica do SARS-CoV-2 para humanos a partir de um hospedeiro animal. Assim, no restante desse post, buscarei apresentar as evidências que temos, até o momento, de que o SARS-CoV-2 surgiu por transferência zoonótica, assim como contextualizar a transferência zoonótica em relação ao surgimento de outros vírus capazes de infectar humanos.

Que evidências temos, até o momento, de que o SARS-CoV-2 surgiu por transferência zoonótica? O coronavírus causador da pandemia que atravessamos hoje, o SARS-CoV-2, é um entre pelos menos seis outros coronavírus que infectam humanos. Apesar de muitos coronavírus, como 229E, NL63, HKU1 e OC43, causarem apenas sintomas leves, dois outros coronavírus são responsáveis por doenças respiratórias graves em humanos, o SARS-CoV e o MERSCoV. O SARS-CoV foi o agente responsável pela pandemia da Síndrome Respiratória Aguda Grave (SARS) de 2003, que acometeu dezenas de países e resultou na morte de mais de 700 pessoas. Já o MERSCoV é o responsável pela Síndrome Respiratória do Oriente Médio (MERS), inicialmente identificada em 2012. Segundo a Organização Mundial de Saúde, até Novembro de 2019 foram diagnosticados mais de 2.400 casos de MERS, resultando em mais de 800 mortes.

Nessa última semana, um artigo publicado na revista Nature comparou uma parte importante do genoma do SARS-Cov-2 ao de outros coronavírus de humanos e de outros hospedeiros animais, com ênfase na sequência de aminoácidos da proteína do espinho proteico (Figura 1). O espinho proteico do coronavírus está intimamente relacionado à capacidade do vírus de penetrar células humanas, e tem sido alvo importante no desenvolvimento de vacinas contra o SARS-CoV-2.  A sequência de aminoácidos do espinho proteico de SARS-CoV-2 de humanos é semelhante às sequências encontradas em coronavírus de morcegos e pangolins (Figura 2), sugerindo fortemente a transmissão zoonótica do vírus. Visto que a sequência em humanos difere, mesmo que minimamente, da sequência dos vírus nessas outras linhagens, ainda não sabemos ao certo a partir de qual hospedeiro animal o SARS-CoV-2 se originou.

Figura_2
Figura 2 – Estrutura do genoma viral com foco especial no gene relacionado ao espinho proteico. Duas regiões do espinho proteico do SARS-CoV-2, destacadas na figura acima, ressaltam a semelhança entre a sequência de aminoácidos da proteína do vírus em humanos (seta vermelha) e em morcegos e pangolins (setas azuis). Ainda, a região chamada de “domínio de ligação ao receptor” (do inglês receptor-binding domain), parte da estrutura proteica do espinho, liga-se ao receptor ACE2 na superfície de células humanas e facilita a infecção das células pelo vírus [Fonte: Modificado de Andersen et al. 2020. Nature].
Além disso, a região do espinho chamada de “domínio de ligação ao receptor” (Figura 2, “Receptor-binding domain”) é a parte do espinho responsável pela ligação do vírus ao receptor ACE2 presente na superfície de células humanas. É a ligação da proteína viral ao receptor ACE2 que permite que ele invada células humanas. Curiosamente, a sequência de aminoácidos do SARS-CoV-2 humano, quando comparado àquela de morcegos e pangolins, apresenta modificações que aumentam a afinidade dessa proteína ao receptor ACE2, sugerindo claramente que essa região é o resultado da seleção natural dessa proteína, tornando-a bastante eficaz na infecção de humanos.  Apesar de termos técnicas capazes de produzir em laboratório agentes infecciosos, tais como um novo vírus, não há qualquer evidência, na região analisada na Figura 2, ou no restante do genoma do vírus, que sugira manipulação genética intencional, visto que os produtos dessas técnicas laboratoriais podem ser facilmente identificados. Além disso, seria esperado que, se um novo vírus fosse criado intencionalmente, este seria criado a partir de sequências de outros vírus já sabidamente patogênicos, como o SARS-CoV e o MERSCoV, e não a partir de genes de pangolins ou morcegos, parcamente conhecidos em relação ao seu potencial patogênico em humanos. Assim, o conjunto de evidências que temos hoje aponta para a transferência zoonótica do SARS-CoV-2 para humanos a partir de um hospedeiro animal.

Não há nada de novo nessa ideia: vários outros vírus já largamente conhecidos, tais como o SARS-CoV e o MERSCoV, o HIV, o Ebola e o H1N1, são exemplos de vírus que tiveram origem em outros grupos animais e, como resultado de processos evolutivos, passaram a infectar o homem. E não pára por ai: a transferência zoonótica está também na origem do sarampo, da varíola, da dengue, da zika, da raiva, e de muitas outras doenças virais. Apesar de uma parte significativa das infecções zoonóticas estarem concentradas nos trópicos, a pandemia atual é um exemplo de como transferências zoonóticas, principalmente em um mundo tão interconectado, podem afetar o globo, com grande impacto na saúde pública, na economia, e na vida de todos nós. Vale ressaltar também que a emergência de novas doenças por transferência zoonótica está associada a intensificação da agricultura e a mudanças ambientais, ou seja, a intensificação da agricultura em várias partes do globo e o impacto ambiental gerado pela pressão de urbanização e pelas mudanças climáticas aumenta o risco de emergência de novas doenças por transferência zoonótica.

Certamente, esse não será o ultimo episódio em que teremos que enfrentar um novo vírus que, anteriormente infectando outros organismos, adquire a capacidade de infectar humanos. E volto, assim, à ideia importante que discuti no final do primeiro parágrafo: apenas com investimento sério em ciência poderemos compreender em detalhes a evolução viral tanto em humanos como em hospedeiros não-humanos. Estudando como os diferentes vírus evoluem em seus hospedeiros não-humanos poderemos, quem sabe um dia, antecipar os eventos de transmissão zoonótica, evitando, ou ao menos nos preparando melhor para pandemias como as que vivemos hoje. Investimento em ciência permite, também, entendermos os mecanismos de infecção viral, guiando o desenvolvimento de novas vacinas e novos tratamentos. Investimento em ciência nos ajuda também a entender como as modificações ambientais que impomos ao planeta interferem nos processos evolutivos, porventura facilitando o surgimento de novas doenças, ou reavivando doenças já erradicadas em determinadas regiões do globo. E, em um momento tão difícil quanto o que estamos vivendo, precisamos, cada um de nós, fazer a nossa parte e levar a sério o isolamento social. Estamos todos juntos no combate a COVID-19 e, quanto mais cedo seguirmos as recomendações dos cientistas, mais vidas serão salvas.

 

Ana Almeida

(Cal State University East Bay, CSUEB)

 

Para saber mais:

Ellwagner, J.E. & Chies, J.A.B. 2018. Zoonotic spillover and emerging viral diseases –time to intensify zoonoses surveillance in Brazil. The Brazillian Journal of Infeccious Disease, 22(1): 76-78.

Holmes, E.C. 2011. What does virus evolution tell us about virus origins? Journal of Virology, 85(11): 5247-5251.

Stated Clearly. 2020. Coronavirus disease (COVID-19). Youtube.

Tesini, B.L. 2020. Coronavírus e síndromes respiratórias agudas (COVID-19, MERS, e SARS). Ministério da Saúde.

World Health Organization. 2020. Coronavirus disease (COVID-19) pandemic. Último acesso em 22/03/2020.

 

Imagem de abertura: Micrografia eletrônica de partículas virais do SARS-CoV-2, causador da pandemia COVID-19 que vivemos hoje, emergindo de células cultivadas em laboratório, coletadas de um paciente nos EUA. Fonte: NIAID-RML, Wikipedia.

O menor dinossauro do mundo (ou não)

A capa da revista Nature desta semana traz a foto da cabeça de dinossauro de apenas catorze milímetros, preservada em âmbar. Os autores estimam que o comprimento total do animal, do focinho ao rabo, era de nove centímetros. É a menor espécie fóssil de dinossauro já encontrada, do tamanho de um colibri-abelha, a menor espécie de ave existente. Os cientistas a batizaram de Oculudentavis khaungraae.

O pequeno dinossauro mumificado dentro da resina vegetal fossilizada foi encontrado em Myanmar, no sudeste asiático, e cedido aos cientistas por um colecionador. Mais de mil espécies de animais preservadas em âmbar provenientes desta mesma localidade foram descritas nas últimas décadas, incluindo aves, lagartos, sapos, aranhas e insetos. Estes fósseis são uma janela única para a vida no planeta há 100 milhões de anos, mas as minas de âmbar, onde eles são encontrados, são exploradas em péssimas condições de trabalho, em uma região de conflito armado, gerando dilemas éticos quanto à sua utilização na ciência.

Para poder aceder aos detalhes morfológicos da cabeça de Oculudentavis, os cientistas usaram um tomógrafo computadorizado alimentado por um acelerador de partículas para produzir imagens de alta resolução (Figura 1). Os olhos eram relativamente enormes, como nas aves, mas os pequenos ossos que cobriam a globo ocular, chamados de ossos escleróticos, tinham forma de colher, mais similar aos dos lagartos. O cérebro também era grande, dominado pelo telencéfalo, muito parecido ao das aves modernas. O focinho era alongado e fino, com muitos dentes. O nome Oculudentavis se refere à presença de dentes na parte posterior da boca, já debaixo dos olhos, uma característica ausente em outros dinossauros.

chico2.png
Figura 1: Tomografia computadorizada da cabeça de Oculudentavis.

Outras características chamaram a atenção dos especialistas. Os dentes não tinham raízes inseridas em alvéolos, mas estavam grudados à superfície do osso, uma condição chamada de acrodontia, comum em outros répteis, mas não em dinossauros e aves. O número de dentes supera o de qualquer outra espécie de dinossauro. E não havia uma abertura na frente da órbita, chamada de fenestra anterorbital, presente em todos os dinossauros, incluindo as aves.

A análise das relações de parentesco apresentada pelos autores sugere que o fóssil é uma espécie basal de ave, um pouco mais derivada que Archaeopteryx. Não foram encontradas penas.

Ou não?

O sociólogo da ciência Robert Merton, há muitos anos, propôs que a atividade científica é guiada por alguns princípios éticos comuns. Um deles é o ceticismo organizado, definido como a análise crítica e sem preconcepções do próprio trabalho.

Assim que o artigo foi publicado, outros especialistas levantaram dúvidas se Oculudentavis seria de fato um dinossauro. Uma das críticas aponta que os autores assumiram previamente que era um dinossauro, e não analisaram outras possibilidades. Várias características de Oculudentavis não estão presentes em dinossauros, mas são comuns em outros répteis. Por exemplo, lagartos não têm fenestra anterorbital, têm ossos escleróticos em forma de colher e acrodontia. Não seria então Oculudentavis um lagarto, com algumas características de aves? Neste caso, olhos e cérebros grandes, focinho alongado e região pós-orbital curta seriam convergências evolutivas, relacionadas a um modo de vida especializado, altamente visual.

Oculudentavis é talvez o menor dinossauro já encontrado e suas características incomuns seriam consequências da sua miniaturização, como sugerem os autores. Ou talvez estamos naquele momento em que chapeuzinho-vermelho percebe que olhos, nariz e boca são grandes demais para ser a vovó. O ceticismo organizado da comunidade científica vai nos trazer uma resposta em breve.

 

João F. Botelho (PUC de Chile)

 

PARA SABER MAIS: 

Xing, L., O’Connor, J.K., Schmitz, L. et al. Hummingbird-sized dinosaur from the Cretaceous period of Myanmar. Nature 579, 245–249 (2020). https://doi.org/10.1038/s41586-020-2068-4

O que significa ser um criacionista defensor do Design Inteligente em 2020?

O Governo Federal indicou para a direção da CAPES – uma agência do Ministério da Educação que regula, avalia e financia atividades de ensino superior – um adepto do Design Inteligente (DI), uma vertente do criacionismo, que nega a teoria da evolução. Por que isso importa?

O livro “A origem das espécies” foi publicado por Charles Darwin há 161 anos. Nele, Darwin constrói um longo argumento acerca de uma ideia central: todos os seres vivos, que vivem ou já viveram, são aparentados uns aos outros e se modificaram a partir de ancestrais comuns. Segundo Darwin, a seleção natural explica muitas das mudanças que os seres vivos sofreram ao longo do tempo.

Há quem não aceite essas ideias. Para criacionistas a diversidade de seres vivos que existe na Terra não resulta da evolução, mas é de alguma forma produto de intervenção divina. Há várias vertentes do pensamento criacionista, mas todas em algum grau negam a ideia básica de que a evolução ocorreu.

O que significa ser um criacionista em 2020?

Ainda que o criacionismo negue a Evolução, começo por lembrar que o pensamento evolutivo pode ser adotado por praticantes de diferentes religiões. Há uma rica história de cientistas que conciliaram, cada qual da sua forma, o pensamento evolutivo e a espiritualidade. No Brasil temos, entre tais pensadores, Crodowaldo Pavan (que foi membro da Academia de Ciências do Vaticano) e Newton Freire Maia (evolucionista e católico praticante). Sim, é possível ter fé e ser evolucionista. No próprio Darwinianas temos um colaborador que é religioso. Espírita praticante, acredita em Deus, em muitas histórias contadas e registradas na Bíblia e nem por isso deixa de ser evolucionista e pesquisador de primeira linha. Diante desse cenário, torna-se muito importante distinguir entre uma visão criacionista, como uma visão religiosa, legítima dentro do domínio da religião, e a tentativa de propor criacionismo como se fosse teoria científica, que se torna uma forma ilegítima de pseudociência.

A versão mais moderna do criacionismo é o Design Inteligente (DI). O argumento dessa forma de criacionismo é que os seres vivos possuem estruturas que são complexas demais para terem se originado pelo processo evolutivo. Segundo o DI, a existência de estruturas complexas refuta a evolução pois a “remoção de uma das partes faria com que o sistema efetivamente cessasse de funcionar”. Considere um olho, que é uma estrutura complexa feita de muitas partes. Assumindo que ele só funciona com todas as peças no lugar, ele precisaria ter surgido já completo, com todas as suas partes, pois olhos incompletos não seriam funcionais. A evolução, vista como processo em que sucessivas mudanças explicam a transformação, não acomodaria o surgimento de uma estrutura complexa de uma só vez. Dada a suposta impossibilidade de explicar o surgimento de traços complexos por processos naturais, os defensores do DI concluem que o responsável seria algum “projetista”, de identidade desconhecida. O indicado para a presidência da CAPES  é um defensor do DI. Ele advoga que o ensino do design inteligente deveria estar presente a partir da educação básica.

Mas os argumentos do DI já foram refutados. Por exemplo, o complexo flagelo das bactérias (estrutura que usam para locomoção) é constituído de múltiplas peças (30 proteínas, para ser mais preciso). Os defensores do DI argumentam que flagelos sem todas as peças no lugar não funcionariam, e que seria impossível que a evolução originasse essa estrutura complexa juntando “de uma só vez” 30 proteínas diferentes. Mas eis que Kenneth Miller estudou a fundo o flagelo bacteriano e descobriu que um subconjunto de proteínas do flagelo também exerce funções completamente distintas da locomoção, injetando toxinas em outras células. Assim, o flagelo não seria formado do zero, mas a partir de grupos de proteínas que já estavam montados, exercendo outra função. Assim, fica muito mais fácil explicar a origem do flagelo, pois peças que o constituem já estavam presentes antes de existirem flagelos, mas exercendo uma função distinta. Dessa forma, conseguimos explicar a existência da estrutura intermediária que culminou na origem do flagelo, e desmontamos o argumento usado pelo  Design Inteligente. Ou seja, mesmo se assumíssemos para fins do argumento que o DI poderia ser mais do que uma pseudociência, e supuséssemos que ele poderia ser uma teoria científica, ainda assim o DI não seria mais do que uma teoria refutada.

E não se trata de somente uma refutação. Outros argumentos favoritos do DI também já foram refutados: a complexa via de coagulação é constituída de proteínas que, também de acordo com estudos de Miller, antes de haver coagulação atuavam no processo de digestão. Há também experimentos em laboratório que mostram que traços complexos surgem a partir de estruturas que desempenhavam outras funções anteriormente. Insistir nos argumentos do DI é negar resultados de trabalhos científicos reconhecidos.  E, o que é mais preocupante, há quem insista na ideia de que se deveria colocar esses argumentos refutados dentro da sala de aula. Uma vez que eles foram cientificamente refutados, o propósito parece ser apenas tentar negar a evolução, nada além disso. Fazê-lo traria grandes prejuizos à educação científica dos brasileiros e, na verdade, de qualquer cidadão do planeta. Mas por que?

Ora, por que ser defensor do DI implica negar um vasto corpo de conhecimentos, que reúne ideias da paleontologia, da genômica, da anatomia, da biogeografia. Significa refutar não um experimento ou estudo isolado, mas toda uma vasta literatura, construída ao longo de mais de um século, inteiramente consistente com as ideias básicas da evolução: somos todos aparentados, descendemos de ancestrais comuns com modificações influenciadas pela seleção natural.

Defender o DI significa, por exemplo, fechar os olhos para experimentos feitos em laboratório por Richard Lenski, que comparou bactérias ao longo de 20 anos e documentou sua transformação pela seleção natural. Significa ignorar os estudos de Peter e Rosemary Grant, que mediram os bicos de tendilhões (uma grupo de aves) ao longo de décadas e mostraram que as suas dimensões mudaram de uma maneira consistente com a disponibilidade de alimentos das ilhas que habitavam, novamente como previsto pela seleção natural. Ser defensor do DI em 2020 é deixar de lado os estudos que identificam mutações em genes que controlam o desenvolvimento de animais, e são capazes de explicar como ao longo do tempo uma pata pode ter se tornado uma nadadeira. Ser defensor do DI significa prescindir de um olhar evolutivo sobre como tumores se transformam ao longo do curso de uma doença: sim, tumores também evoluem, e as teorias usadas para explicar a evolução das espécies ajudam a entender como as células num tumor coexistem e competem, e como a constituição da massa de células que chamamos de tumor se transforma. Ser defensor do DI implica fechar os olhos para a resposta que temos nos dias de hoje para aquilo que Darwin chamou de “o mistério dos mistérios”, que é o surgimento de novas espécies. Hoje identificamos genes específicos que, quando alterados, explicam por que um grupo que era uma única espécie tornou-se dois grupos de organismos de espécies distintas, incapazes de cruzar uns com os outros e produzir descendentes férteis. Sim, temos uma compreensão de mecanismos moleculares que explicam como uma espécie se transforma em duas.

Em muitos casos, ser defensor do DI infelizmente também significa deturpar a forma como cientistas trabalham. Um dos discursos mais perniciosos e recorrentes é o de que os alunos estudando evolução precisam também aprender sobre o “outro lado”, que seriam as perspectivas criacionistas. Mas outro lado do quê? O “outro lado” de uma ideia evolutiva é uma nova ideia científica que discorda dela. Dessas temos muitas na biologia evolutiva: debater ideias e criticar colegas é o cotidiano de um cientista, e num post anterior já tratei de áreas particularmente controversas da biologia evolutiva.

Argumentos anti-evolutivos oferecidos por criacionistas defensores do DI não são “o outro lado” da evolução; apesar de sua roupagem científica, eles são uma negação da forma científica de pensar. Faço uma analogia: um paciente insatisfeito com um médico tem todo direito de buscar um tratamento espiritual para sua mazela. Mas não se pode dizer que ele foi buscar uma “segunda opinião”. Ele terá abdicado do caminho médico e seguido outro rumo. De modo análogo, trazer o criacionismo para a as aulas de ciência é fazer com que a aula deixe de ser de ciências.

Demandar que se ensine uma ideia religiosa numa aula de ciências faz tão pouco sentido quanto demandar que se inclua no culto de uma religião uma discussão científica das escrituras sendo lidas. Notem, não se trata de defender que uma coisa é melhor que outra, mas de reconhecer diferenças. E isso é importante porque apresentar diferentes conhecimentos às pessoas sem tratar de suas diferenças apenas cria pessoas confusas.

Ser criacionista defensor do DI é negar a ciência da evolução, mas não através de argumentos científicos. Ao fim e ao cabo, significa negar a ciência. Dessa forma, o argumento de que o DI teria alguma suposta teoria científica alternativa, que deveria ser ensinada nas aulas de ciências, é em si uma contradição. Como algo que nega o pensamento científico pode ser científico?

Ser criacionista defensor do DI em 2020 é negar a forma como o conhecimento é construído, e propositalmente confundir controvérsias que são inerentes à ciência com um pretexto para tentar derrubar uma das mais sólidas teorias construídas pela ciência. É não compreender que a evolução não é um fato isolado, mas uma teia de conhecimentos apoiada por uma comunidade de cientistas com critérios rigorosos para avaliar quais experimentos, observações ou cálculos matemáticos são confiáveis.

Ser criacionista defensor do DI em 2020 é incompatível com ocupar uma posição de liderança na comunidade científica, como um país da importância do Brasil deveria almejar.

Diogo Meyer (Universidad de São Paulo)

Para saber mais:

A goleada de Darwin, de Sandro de Souza. Record, 2009.

Creationism and Intelligenet Design, de Eugenie Scott. Em “The Princeton Guide to Evolution”, editado por David Baum e colaboradores.

O que está em jogo no confronto entre criacionismo e evolução? De Diogo Meyer e Charbel Niño El-Hani, Filosofia e História da Biologia, 8: 211-222.

Inovação responsável como desafio das democracias contemporâneas

Um dos principais desafios das sociedades contemporâneas é a gestão responsável da pesquisa e inovação, que podem mudar nossas vidas de maneiras importantes. Como a governança da pesquisa e inovação pode ser feita de modo a gerar mudanças responsáveis dos nossos modos de vida?

Um dos principais desafios das sociedades contemporâneas é a gestão responsável da pesquisa e inovação. Por gerar novos modos de vida em sociedade, a pesquisa e a inovação devem ter uma governança responsável. Afinal, a compreensão das relações entre ciências, tecnologias, sociedades e ambientes leva a um entendimento de que ciências e tecnologias não são constituídas apenas tecnicamente, mas também social e politicamente. De um lado, determinantes sociopolíticos afetam os caminhos das ciências e tecnologias; de outro, estas últimas levam a outros modos de existência social e política, como nosso tempo presente mostra com clareza. Embora frequentemente vistas como meios de controlar a natureza, há um outro lado nas ciências e tecnologias: elas podem, paradoxalmente, aumentar nossos sentimentos de incerteza e ignorância. Isso porque podem ter impactos não-previstos, potencialmente prejudiciais, assim como capazes de transformar nossos modos de vida.

É necessária fundamentação teórica para a compreensão da pesquisa e inovação responsáveis. Na postagem de hoje, discuto uma proposta para tal fundamentação, elaborada por Jack Stilgoe, Richard Owen e Phil Macnaghten, em artigo influente (1165 citações no Google Scholar®) publicado há seis anos no periódico Research Policy. Esta fundamentação se baseia em quatro dimensões integradas da inovação responsável: antecipação, reflexividade, inclusão e responsividade.

Na segunda metade do século XX, o poder das tecnologias relacionadas (frequentemente de maneiras complexas) com as ciências, sua capacidade de mudar nossas vidas, seus potenciais crescentes de produzir tanto benefícios quanto riscos, ampliaram os debates sobre as responsabilidades de cientistas (e de outros agentes de inovação, por exemplo, órgãos de fomento à pesquisa e corporações) para além de abordagens anteriores. No caso dos cientistas, esses debates colocaram em xeque visões convencionais que tendem a ver as ciências apenas como emancipatórias (podendo perder de vista os riscos ou a distribuição desigual dos benefícios da pesquisa) e os cientistas como autônomos em suas decisões (podendo negligenciar determinantes como os valores e interesses dos cientistas e de seus financiadores). A resposta de parte da comunidade científica tem sido resistir a essas tendências e buscar preservar um ideal de autonomia nas decisões sobre a pesquisa. Mas parte da comunidade científica abraçou uma discussão sobre a responsabilidade dos cientistas que vai além do reconhecimento e da negociação sobre condutas responsáveis em seus papeis profissionais.

Essas visões ampliadas sobre a responsabilidade dos cientistas podem ser expressas em termos de três formas de responsabilidade: responsabilidade 1.0 – integridade e produção de conhecimento confiável; responsabilidade 2.0 – ciência para a sociedade; responsabilidade 3.0: ciência com e para a sociedade. Pesquisa e inovação responsáveis se vinculam à responsabilidade 3.0. Esta forma de responsabilidade parece mais capaz de produzir, para fazer referência a um livro muito interessante organizado por Boaventura de Sousa Santos, um conhecimento prudente para uma vida decente.

O que é inovação responsável

Inovação responsável significa, para Stilgoe e colaboradores, “cuidar do futuro através da gestão coletiva da ciência e da inovação no presente”. Ela deve ser responsiva a um conjunto de questionamentos importantes em debates públicos sobre novas áreas científicas e tecnológicas, que são tipicamente colocados para cientistas ou que o público gostaria que os cientistas se perguntassem. A Tabela 1 sumaria essas questões, conforme sistematizadas por Macnaghten e Chilvers em termos de sua relação com produtos, processos ou propósitos da inovação, a partir de 17 debates públicos sobre ciência e tecnologia no Reino Unido. Considerar esses questionamentos é um importante passo para ir além de uma governança da ciência e inovação convencional, que foca sobre questões de produtos apenas, obscurecendo áreas de incerteza e ignorância acerca tanto dos riscos quanto dos benefícios. A inovação responsável pode ser entendida como uma maneira de incorporar a deliberação sobre essas questões no próprio processo de inovação.

Tabela 1: Linhas de questionamento sobre inovação responsável

Questões sobre produtos Questões sobre processos Questões sobre propósitos
Como riscos e benefícios serão distribuídos? Como padrões devem ser desenhados e aplicados? Por que os cientistas estão fazendo isso?
Que outros impactos podemos antecipar? Como riscos e benefícios devem ser definidos e mensurados? Essas motivações são transparentes e em prol do interesse público?
Como esses impactos poderiam mudar no futuro? Quem está no controle? Quem se beneficiará?
O que não sabemos a respeito? Quem está participando? O que eles irão ganhar?
O que não poderíamos jamais saber a respeito? Quem assumirá a responsabilidade se as coisas derem errado? Quais são as alternativas?
  Como podemos saber se estamos certos?  

Para cientistas que abraçam tal visão ampliada de suas responsabilidades, são muitos os desafios, em especial quando não temos formação para lidar com vários aspectos consideravelmente complexos de uma ciência que é feita com e para a sociedade. Por isso, fundamentações como aquela proposta por Stilgoe e colaboradores são muito úteis. Um avanço importante incorporado nessa proposta é não focar apenas nos produtos da ciência e inovação, ou apenas nos riscos e prejuízos de tais produtos. Assim, busca-se ir além de regulamentações baseadas no risco dos produtos da inovação, embora sem deixar de lado esse aspecto. As ciências e tecnologias tipicamente transbordam para além das fronteiras dos marcos regulatórios existentes, bem como para além de nossa capacidade de pensar riscos e benefícios a partir de nossas experiências passadas. Precisamos de mais do que uma abordagem retrospectiva da responsabilidade, na medida em que, na inovação, o passado e o presente podem não oferecer uma orientação razoável para o futuro.

Como comentam Michel Callon, Pierre Lascoumes and Yannick Barthe, necessitamos de novos “fóruns híbridos” que enriqueçam e expandam nossas democracias, tornando-as mais capazes de absorver debates e controvérsias em torno de ciência e tecnologia. Essas controvérsias mostram que preocupações públicas não podem limitar-se aos riscos dos produtos da inovação, mas devem estender-se para os propósitos e as motivações da pesquisa, as direções da inovação, a emergência de novos sistemas sociotécnicos, a distribuição dos benefícios, entre muitos outros aspectos. Deve-se, assim, passar de uma regulamentação baseada apenas no risco para dimensões de responsabilidade orientadas para o futuro, marcadas pelo cuidado e pela responsabilidade com nossas vidas coletivas e com o planeta, com maior potencial de acomodar a incerteza e de promover reflexões sobre valores, propósitos, justiça.

Trata-se de buscar, numa palavra, uma nova governança científica, ou, dito em outras palavras, um novo contrato social entre ciência e público. Para tanto, é preciso abrir novos espaços de diálogo público sobre ciência e inovação. A pesquisa e inovação responsáveis devem trafegar por esses espaços de diálogo público, buscando produzir conhecimento com e para a sociedade. Os quatro pilares da proposta de Stilgoe e colaboradores – antecipação, reflexividade, inclusão e responsividade – fornecem bússolas muito úteis para cientistas que se põem a navegar no espaço entre pesquisa e implementação. Estes cientistas não devem manter suas práticas científicas como antes, porque, tudo o mais sendo igual, não fornecerão orientações e procedimentos suficientemente robustos e confiáveis para a prática transdisciplinar que a responsabilidade 3.0 demanda. Trata-se de reconfigurar nossas práticas para conseguir prosseguir nessa navegação. Como? Uma contribuição relevante para respondermos a essa pergunta pode ser dada a partir dos quatro pilares citados, que fornecem uma moldura teórico-prática para colocar e discutir os questionamentos na Tabela 1.

Mas antes de dedicar-me a tratar desses pilares, cabe uma palavra sobre o uso do adjetivo “responsável”, na medida em que pode sugerir alguma acusação a colegas na comunidade científica que seriam supostamente “irresponsáveis”. Essa inferência não procede, contudo, porque ela erra no foco de análise. O que está em foco são responsabilidades políticas coletivas, ou corresponsabilidades, de cientistas, financiadores da pesquisa, inovadores e outros, e não alguma forma de responsabilidade individual. Não são esses diversos atores que poderiam ser, individualmente, acusados de irresponsabilidade. Tratam-se, antes, de sistemas complexos e acoplados de ciência e inovação que criam o que Ulrich Beck chamou de “irresponsabilidade organizada”. Tratam-se de aspectos de tais sistemas que levam a quatro categorias de inovação irresponsável identificadas por René von Schomberg, que incluem, por exemplo, a negligência de princípios éticos e a falta de precaução e prevenção. Não se trata, então, de diagnosticar responsabilidades ou irresponsabilidades em cientistas individuais, mas de desenvolver sistemas que favoreçam escolhas responsáveis, no presente e no futuro, através da antecipação e da obtenção de conhecimentos sobre as possíveis consequências das ciências e tecnologias, assim como do desenvolvimento de capacidades de responder a tais consequências.

Pilares da inovação responsável

A primeira dimensão da inovação responsável identificada por Stilgoe e colaboradores é a antecipação. As implicações de novas tecnologias frequentemente não são previstas e análises baseadas em riscos costumam fracassar na tentativa de fornecer indicações precoces de seus efeitos futuros. A antecipação implica a colocação de questões da forma “e se…?” por pesquisadores e organizações, levando-os a considerar contingências, o que sabemos, o que é provável, o que é plausível, o que é possível. Ela permite gerar expectativas que servem não apenas para realizar previsão, mas também para moldar futuros possíveis e desejáveis, e organizar recursos para alcançar estes últimos. A participação é fundamental para uma prática de antecipação que aumente a resiliência dos processos de inovação e dos futuros desejados. Há uma tensão entre a previsão, que tende a reificar futuros particulares, e a participação, que tende a abrir possibilidades novas de antecipação. Entre os métodos que podem ser usados na antecipação, temos o planejamento de cenários (que devem ser plausíveis) e a avaliação de visões (vision assessment). Esses métodos se mostram mais eficientes com um engajamento público desde estágios precoces de um processo de inovação (o que tem sido denominado upstream public engagement). Este último aspecto é muito importante: processos antecipatórios devem ser bem situados no tempo, porque devem ser suficientemente precoces para que sejam construtivos e suficientemente tardios para que sejam significativos. Dessa maneira, eles criam maiores possibilidades de se compreender a dinâmica da promessa que molda cenários futuros.

A reflexividade é a segunda dimensão considerada por Stilgoe e colaboradores, que argumentam que responsabilidade requer esse atributo dos agentes e das organizações. É comum entre os cientistas a ideia de que a reflexividade significa a crítica mútua como princípio organizacional das ciências. De fato, este é um significado importante de reflexividade. Contudo, não é suficiente. É necessária reflexividade ao nível das práticas institucionais, o que significa analisar sistematicamente as próprias atividades, compromissos e suposições, mas também ter consciência dos limites do conhecimento (especialmente, considerando-se a complexidade dos sistemas naturais e a incerteza inerente ao nosso entendimento deles, seja qual for sua natureza, seja científico ou não), assim como de que um enquadramento particular de um problema pode não ter acordo de todas as partes interessadas. Para além da crítica profissional exercida pelos cientistas, a responsabilidade torna a reflexividade um assunto público, que deve envolver não somente laboratórios, mas também órgãos de fomento e regulação, partes interessadas, o público e outros agentes e instituições envolvidas na governança da ciência e inovação. Os órgãos de fomento, por exemplo, devem ter a responsabilidade não somente de refletir sobre seus próprios sistemas de valores, mas também de fomentar a capacidade reflexiva nas práticas de ciência e inovação. Entre os métodos que podem promover reflexividade, temos, por exemplo, a elaboração de códigos de conduta e práticas de reflexão dentro dos laboratórios, acerca do contexto socio-ético do trabalho científico, envolvendo frequentemente participação de cientistas sociais e filósofos.

Um terceiro pilar é a inclusão de novas vozes na governança da ciência e inovação, como parte da construção de legitimidade. Entre os processos de diálogo público utilizados com esse propósito, temos conferências de cidadãos (consensus conferences), júris de cidadãos, mapeamento deliberativo, votação deliberativa, assim como oficinas participativas e grupos focais, parcerias de múltiplas partes interessadas, inclusão de membros do público em comitês científicos consultivos e outros mecanismos híbridos que tentam diversificar as contribuições para a governança da ciência e inovação. Ao comprometer-se com a inclusão em tal governança, não se deve perder de vista uma série de aspectos, por exemplo, o de que processos de inclusão implicam consideração de questões relativas ao poder. Eles suscitam, por exemplo, preocupações quanto a efeitos de enquadramento (framing effects) que podem fazer com que processos de diálogo reforcem relações preexistentes de poder profissional e modelos do público baseados em déficit (por exemplo, em sua compreensão do que está em pauta nos debates sobre ciência e inovação). Além disso, a variabilidade das práticas de governança inclusiva e de seus impactos sobre políticas públicas tem levado, por exemplo, a críticas e demandas de maior clareza quanto aos métodos de participação, aos propósitos de seu uso e aos critérios para sua avaliação. Contudo, ao tecer tais críticas, deve-se ter o cuidado, ao exigir que sejam satisfeitos princípios ideais, de não perder de vista variedades de engajamento que são menos do que perfeitas, mas, ainda assim, são de alguma maneira boas. Tampouco se deve negligenciar a natureza dos processos participativos como modalidades de experimentação coletiva e em andamento.

Ademais, critérios de qualidade do diálogo público têm sido desenvolvidos e podem ser empregados para avaliar processos participativos. Callon e colaboradores, por exemplo, propõem três critérios: intensidade – quão cedo membros do público são consultados e quanta atenção é dada à composição do grupo de discussão; abertura – quão diverso é o grupo e quem está representado; e qualidade – a seriedade e continuidade da discussão. Deve haver espaço, também, para que público e partes interessadas questionem o próprio enquadramento do diálogo e os processos de participação, e não somente os problemas e as soluções particulares postas em discussão. Tomados os devidos cuidados, processos de engajamento público na governança da ciência e inovação podem ser considerados legítimos, especialmente se seus objetivos forem modestos e se as suposições e os compromissos subjacentes a eles estiverem, eles próprios, abertos ao escrutínio público.

Por fim, a responsividade é um quarto pilar da ciência e inovação responsáveis. A inovação responsável demanda a capacidade de mudança em resposta às contribuições, aos valores, às expectativas do público e das partes interessadas, bem como em resposta a circunstâncias mutáveis e à insuficiência do conhecimento e do controle. Há vários mecanismos que tornam a inovação responsiva aos demais pilares considerados por Stilgoe e colaboradores, antecipação, reflexividade e inclusão. Por exemplo, aplicação do princípio da precaução, de moratórias (por exemplo, de uso de uma inovação antes de uma melhor compreensão de suas implicações) e de códigos de conduta pode ser apropriada num conjunto de casos. O emprego de design sensível a valores pode ser útil em outros casos, por criar a possibilidade de incorporar determinados valores éticos nas tecnologias.

A promoção da diversidade na gestão da ciência e da inovação é outro elemento importante da responsividade. Isso requer a análise de tensões e mecanismos de governança dentro dos processos de financiamento da pesquisa, de garantia de propriedade intelectual e de estabelecimento de padrões tecnológicos, que frequentemente fecham a inovação de determinadas maneiras, em vez de abri-lo à participação diversa. Entre os fatores que podem aumentar a responsividade institucional, temos: uma cultura de política científica deliberativa; ênfase sobre aprendizagem reflexiva e sobre a própria responsividade; cultura organizacional aberta, enfatizando inovação, criatividade, interdisciplinaridade, experimentação e coragem de assumir riscos; compromisso com engajamento e interesse públicos. Todos esses aspectos têm importância na busca por superar uma “lógica de não-responsividade” que tem sido frequente na governança da ciência e inovação, especialmente quando pesquisa e desenvolvimento são vinculadas ao crescimento econômico sem um questionamento de “qual pesquisa” e “qual desenvolvimento” seriam desejáveis.

Por fim, devemos considerar que esses pilares não devem ser vistos separadamente, mas integrados e incorporados na governança da ciência e inovação. Eles devem, ademais, ser apropriadamente conectados a culturas e práticas de governança. As dimensões acima podem se reforçar mutuamente: por exemplo, maior reflexividade tende a promover maior inclusão, e vice-versa. Contudo, eles também podem estar em tensão e gerar conflitos: por exemplo, antecipação pode gerar maior participação, mas também pode sofrer resistência da parte de cientistas que buscam defender sua autonomia, ou seus compromissos prévios com determinadas trajetórias de inovação. Trazer à tona tais tensões e, assim, colocá-las em negociação são passos importantes para tornar responsiva a inovação responsável. Trata-se, em suma, de integrar as dimensões e estratégias para inovação responsável numa abordagem de governança coerente e legítima, explorando o que conta como inovação responsável no nível macro das políticas públicas, no nível micro do laboratório de pesquisa e no nível meso das estruturas e práticas institucionais que conectam os níveis precedentes.

Uma estratégia que permite trabalhar de modo integrado com dimensões da inovação responsável é a chamado stage-gating, um mecanismo bem estabelecido de desenvolvimento de novos produtos, que divide o processo de pesquisa e desenvolvimento em estágios discretos, separados por pontos de decisão, nos quais a progressão ao longo dos estágios se baseia no cumprimento de determinados critérios. Convencionalmente, esses critérios são baseados em considerações técnicas e de potencial mercadológico. Contudo, o processo de stage-gating pode ser adaptado para incluir critérios de inovação responsável.

Para um projeto de geo-engenharia, Stilgoe e colaboradores usaram os seguintes critérios para decisão sobre cada estágio do processo de pesquisa e desenvolvimento: 1. Riscos identificados, gerenciados e tornados aceitáveis (dimensão: reflexividade); 2. Compatibilidade com regulamentações relevantes (dimensão: reflexividade); 3. Comunicação clara da natureza e dos propósitos do projeto (dimensão: reflexividade, inclusão); 4. Aplicações e impactos descritos e mecanismos colocados em ação para revisão a seu respeito (dimensão: antecipação, reflexividade); 5. Mecanismos para compreender visões do público e de partes interessadas identificados (dimensão: inclusão, reflexividade). Um painel independente de avaliação do projeto tomou decisões, então, acerca da progressão ao longo dos estágios. Os critérios de decisão nos estágios 1 e 2 não estão relacionados a uma noção orientada para o futuro, prospectiva de responsabilidade, enquanto os critérios 3-5 se ocupam de questões e impactos potenciais mais amplos, associados com enquadramento da pesquisa, abordagens de comunicação, relações com diálogo público e problemas relacionados a desdobramentos futuros.

O processo de stage-gating como um todo correspondeu a uma prática de responsividade, com um grau relevante de reflexividade institucional. As ambições eram apropriadamente modestas. O processo aumentou a abertura da discussão sobre governança de ciência e inovação no contexto complexo de um projeto de geo-engenharia, trazendo à tona tensões, enquadramentos, suposições implícitas, aspectos contestados, valores e compromissos. Ele permitiu, ainda, que os cientistas e membros do painel independente e do órgão de fomento antecipassem impactos, aplicações e problemas previamente não explorados. Ao longo do processo, surgiram evidências de uma cultura de pesquisa e inovação mais reflexiva e deliberativa.

Esta experiência sugere a pertinência de investigar a aplicabilidade de processos de stage-gating para o uso integrado de dimensões de inovação responsável – antecipação, reflexividade, inclusão e responsividade – em iniciativas que não se vinculam a tecnologias emergentes, a exemplo da geo-engenharia, mas a outros processos inovadores que demandam diálogo público e responsabilidade na realização de pesquisa e inovação para e com a sociedade. Nós estamos iniciando a exploração, por exemplo, dessas dimensões da inovação responsável e do processo de stage-gating em processo de criação de unidades de conservação. Esta decisão é um resultado de uma compreensão de que novas práticas são necessárias para que naveguemos no espaço de pesquisa e implementação com a devida prudência e responsabilidade social. Não se trata, contudo, de aplicar alguma moldura teórica como se fosse uma resposta pronta de governança, mas antes como um espaço de construção fértil de uma abordagem de pesquisa e inovação responsáveis, que possa promover aprendizagem social e potencializar a agência coletiva de uma diversidade de partes interessadas.

 

Charbel N. El-Hani

Instituto de Biologia/UFBA

 

PARA SABER MAIS:

Callon, M., Lascoumes, P. & Barthe, Y. (2009). Acting in an Uncertain World: An Essay on Technical Democracy. Cambridge, MA: MIT Press.

Irwin, A. (2006). The politics of talk: coming to terms with the ‘new’ scientific governance. Social Studies of Science 36: 299–330.

Irwin, A., Jensen, T. & Jones, K. (2013). The good, the bad and the perfect: criticizing engagement practice. Social Studies of Science 43: 118–135.

Macnaghten, P. & Chilvers, J. (2013). The future of science governance: publics,policies, practices. Environment and Planning C: Politics and Space 32: 530-548.

Owen, R., Bessant, J. & Heintz, M. (Eds.). (2013). Responsible Innovation: Managing the Responsible Emergence of Science and Innovation in Society. London: Wiley.

Stilgoe, J., Owen, R. & Macnaghten, P. (2013). Developing a framework for responsible innovation. Research Policy 42

O bebê Yoda e a ciência da fofura

Provavelmente, apenas os Wampas escondidos nas cavernas do isolado planeta Hoth ainda não viram a fofura que tomou conta das redes nas últimas semanas: um bebê da mesma espécie do personagem Yoda da saga Star Wars. A série na qual o personagem aparece ainda não estreou no Brasil, mas os memes já chegaram por aqui. O rostinho do personagem –apelidado de bebê Yoda por falta de um nome mais apropriado– despertou os instintos maternais e paternais de fãs da série e outros desavisados que viram a fofura por aí. Mas por que os olhos grandes, o nariz pequeno e o rosto rechonchudo do personagem causam esse sentimento? Continue Lendo “O bebê Yoda e a ciência da fofura”

Ciência é atividade imaginativa, não “receita de método científico”

Visões caricatas da ciência, que nutrem mito de método científico como sequência linear de passos, ocultam papel da imaginação na ciência e contribuem para rejeição da ciência pela sociedade

Desde os primeiros anos da escolaridade, somos inculcados com a ideia de que fazer ciência seria seguir uma série mecânica de passos, começando com observações, a partir das quais são levantadas hipóteses, das quais são deduzidas consequências, as quais são testadas por meio de experimentos, como se o trabalho científico fosse a mesma coisa que seguir uma receita de bolo. Uma vez analisados os resultados do teste, uma conclusão seria então obtida, mantendo-se ou abandonando-se a hipótese.

A ciência pode, de fato, envolver a chamada lógica hipotético-dedutiva, mas testar consequências previstas a partir de uma hipótese também não é uma atividade mecânica feita sempre na mesma sequência e nem hipóteses resultam necessariamente de observação! Aliás, prefiro falar em lógica ou raciocínio em vez de método hipotético-dedutivo, por considerar a primeira expressão mais precisa, quando queremos nos referir a um modo lógico de proceder na pesquisa.

Propor que a ciência seria caracterizada por um método científico entendido como uma rígida e recorrente sequência de passos tem inúmeros problemas. Muitos críticos dessa proposição sobre como a ciência funciona se referem, então, a um mito do método científico. Estas críticas têm sido feitas tanto na literatura técnica, quanto na popularização da ciência.

Primeiro, obscurece que ciência se faz de várias maneiras, e não necessariamente seguindo uma lógica hipotético-dedutiva. Podemos, por exemplo, obter grandes séries de dados sobre algum fenômeno (como expresso na metáfora big data) e, a partir delas, extrair algum padrão regular, como fazemos, por exemplo, quando inferimos a presença de um determinado padrão de expressão de genes de um tipo celular com base em grandes conjuntos de dados sobre os RNAs presentes em células daquele tipo. Nesse caso, estamos usando uma lógica indutiva e, evidentemente, seguimos fazendo ciência.

Podemos observar algum padrão na natureza, por exemplo, uma concentração estranhamente alta do elemento químico irídio nas mesmas camadas geológicas em diversos locais do mundo e perguntar qual seria a melhor explicação para esse padrão, concluindo, digamos, que a queda de um grande meteorito com a mesma datação das camadas geológicas constitui a melhor explicação. Estamos usando, então, uma lógica abdutiva, inferindo a melhor explicação a partir dos dados, e, claramente, continuamos fazendo ciência.

Podemos considerar funcionamento mental de crianças, por exemplo, o modo como elas usam determinados modos de pensar ao longo do tempo e perguntar pela gênese desses modos de pensar, entendendo, por exemplo, como se desenvolve o pensamento conceitual na formação da mente humana. Estamos usando, então, uma lógica genética (não no sentido de ‘genes’, como regiões do DNA, mas no sentido de ‘gênese’) e, é claro, estamos fazendo ciência!

Segundo, o mito do método científico favorece uma ideia perniciosa, que se arraigou na formação de cientistas em muitas áreas e universidades, infelizmente: a de que aprender a fazer ciência seria aprender um conjunto de técnicas e protocolos para executar testes empíricos. Certamente, o trabalho científico inclui técnicas, protocolos, testes empíricos, mas limitá-lo a isso é ignorar que ciência também se faz tendo ideias, pensando novas teorias, imaginando novos modelos, supondo a existência de fenômenos nunca antes observados, em suma, que ela envolve muito mais do que apenas testar hipóteses. Frequentemente, essas visões caricatas da ciência também são acompanhadas de uma redução do teste empírico ao experimento, ignorando-se que testes empíricos rigorosos podem não ser experimentais: por exemplo, posso testar uma hipótese sobre a história evolutiva de um grupo de organismos examinando sistematicamente a distribuição de caracteres entre eles, usando o chamado método comparativo, e não um método experimental.

Terceiro, sugere que a ciência é uma atividade protocolar, uma repetição enfadonha dos mesmos passos prescritos. Já deve ter transparecido no parágrafo anterior, contudo, que ciência é tudo menos um trabalho mecânico. A ciência é uma atividade profundamente criativa, uma tentativa de entender o desconhecido com nossos melhores recursos cognitivos, incluindo nossa imaginação. A ciência não consiste na busca apenas de testar ideias que já tivemos, mas é uma aventura ousada de tentar ter ideias que nunca jamais ninguém teve, frequentemente alcançadas combinando-se de modo criativo uma série de ideias que já estavam disponíveis anteriormente. Foi assim, por exemplo, que Darwin e Wallace tiveram a ideia da seleção natural como força criativa no mundo vivo (criativa de adaptações e espécies) a partir de um conjunto de ideias já muito conhecidas, sobre crescimento populacional, herança, relações entre organismos, relações dos organismos com o meio etc.

A crise de confiança na ciência, que tem levantado bastante preocupação, tem a ver, ao menos em parte, com o modo como ensinamos ciência às pessoas. Pesquisa executada pelo Instituto Gallup, encomendada pela organização britânica Wellcome Trust, verificou que 75% dos brasileiros desconfiam da ciência e 23% consideram que produção científica pouco contribui para desenvolvimento econômico e social do país. Muitos desses são brasileiros que possivelmente amam ficar em seus telefones celulares sem nem desconfiar que não haveria celular sem ciência, ou ganham seu pão do dia-a-dia em muitas atividades que somente existem ou são praticadas do modo como o são hoje por causa da ciência, como a medicina, por exemplo, ou a engenharia, ou a agricultura, ou….. A lista é imensa! Como pode ter surgido tal descompasso entre o que se pensa e o modo como se vive?

Uma explicação plausível é que essas pessoas não estabelecem conexão entre o que aprenderam ser ciência na escola e todos esses produtos de seu cotidiano, ou mesmo com suas atividades profissionais. Podemos então não estar ensinando ciência de modo apropriado. Esta me parece uma conclusão importante. O problema tem certamente muitas raízes. Não seria possível dizer que o mito do método científico como atividade mecânica seja a única causa do problema. Mas parece-me que é parte da causa, porque apresenta de modo assustadoramente pobre uma das atividades mais instigantes da humanidade, fazer ciência.

 

Charbel N. El-Hani

Instituto de Biologia/UFBA

 

PARA SABER MAIS:

Bauer, H. H. 1994. Scientific Literacy and the Myth of the Scientific Method. University of Illinois Press.

Godfrey-Smith, P. 2003. Theory and Reality. The University of Chicago Press.

Numbers, R. L. & Kampourakis, K. 2015. Newton’s Apple and Other Myths about Science. Harvard University Press.

 

Figura: Mito do método científico como receita de bolo é algo tão divulgado que está presente em uma série de páginas da Wikipedia. Esta imagem, por exemplo, se encontra na página sobre pseudociência, em inglês

Qual será a importância da estupidez na pesquisa científica?

“Já que você é cientista, me diga aí…”. Essa é uma frase que nós cientistas ouvimos muito, em vários lugares. Dos nossos parentes, amigos, de pessoas que conhecemos. Seja sobre o Universo, máquina de lavar, forno micro-ondas, aquecimento global ou sobre a fruta que estamos comendo. Mas será que temos tantas respostas assim? Como é que nos sentimos perante a nossa ignorância?

Motivado pelo ensaio intitulado “The importance of stupidity in scientific research” (em tradução livre “a importância da estupidez na pesquisa científica”), escrito por Martin A. Schwartz, professor do Departamento de Microbiologia da Universidade de Virginia (EUA), que me foi enviado pelo querido amigo Danilo Coimbra, refleti um tanto e escrevo este post. No seu texto, o Prof. Schwartz nos conta que depois de anos encontrou uma amiga, que fez pós-graduação na mesma época que ele, e com muito espanto soube que ela desistiu de ser cientista para fazer direito e trabalhar como advogada. Abismado com a notícia ele perguntou o motivo e ela revelou que se sentia estúpida o tempo inteiro, por isso mudou de área. É importante destacar que ela, desde aquela época, era muito competente e que essa competência se reflete na posição que ela ocupa hoje. Isso tocou o Prof. Schwartz, que ficou refletindo sobre o assunto por dias e percebeu que este é um sentimento bem comum para ele. Mas por que será que ele continua? Continue Lendo “Qual será a importância da estupidez na pesquisa científica?”