Papéis sexuais são uma falsa dicotomia?

Na nossa sociedade, tendemos a encaixar o que é um macho e o que é uma fêmea em definições fixas. De fato, há razões evolutivas para eles terem diferenças marcantes. Mas estudos recentes questionam a universalidade dessa dicotomia.

Na natureza, tipicamente há na reprodução sexual um gameta que é maior e, assim, demanda maior investimento para ser produzido (em termos de nutrientes, tempo, energia), e que tem menor ou nenhuma mobilidade. Ele se encontra com um gameta pequeno, de maior mobilidade, que demanda menos energia para ser produzido (sendo muitas vezes descartável). A reprodução envolvendo esses tipos de gameta é chamada de anisogamia (do grego, anisos: ‘desigual’ + gamos:casamento). Nós designamos por “fêmeas” os indivíduos que produzem os gametas maiores e em menores quantidades, e por “machos”, os que produzem os gametas menores em grande quantidade. Também há organismos que produzem ambos, chamados de hermafroditas. Há na biologia uma argumentação sólida sobre por que a anisogamia foi selecionada em quase todas as espécies que fazem reprodução sexuada. Essa argumentação é baseada na ideia de que, quando temos gametas de vários tamanhos competindo os que produzem gametas de tamanho mais extremo (muito grande ou muito pequeno) terão maior facilidade para se reproduzir do que os que produzem de tamanho mais intermediário.

Se há na natureza indivíduos que produzem gametas pequenos, móveis e abundantes, e outros que produzem gametas grandes, imóveis e repletos de reservas, cabe perguntar se as diferenças no tipo de gameta resultaram em diferenças comportamentais e morfológicas, uma vez que as pressões seletivas sobre indivíduos que produzem cada tipo de gameta devem ser, em princípio, diferentes. Foi exatamente essa a questão abordada por Angus Bateman (1919-1996), que ao estudar moscas-das-frutas propôs que existia uma variação maior na taxa de sucesso reprodutivo entre machos do que entre fêmeas (princípio de Bateman), e que esse sucesso dependia do número de fêmeas com as quais eles conseguiam copular. Já para as fêmeas, Bateman encontrou outro efeito: tinham maior sucesso reprodutivo aquelas que escolhiam machos de maior qualidade.

A teoria de Bateman estabeleceu uma relação entre a anisogamia e a noção de que a seleção natural age assimetricamente em cada sexo, uma vez que, quando os gametas são baratos de produzir, seria uma boa estratégia distribuí-los ampla e indiscriminadamente, enquanto que, quando são custosos, é preferível escolher bem como usá-los. Isso resultaria em diferenças comportamentais e físicas entre machos e fêmeas. O princípio de Bateman explica algumas características que variam com o sexo, entre elas, o fato de machos competirem por parceiros reprodutivos, o maior cuidado parental por parte de fêmeas, assim como o fato de estas serem seletivas na escolha do parceiro. Os traços que podemos relacionar com cada sexo, além do tamanho do gameta, são chamados de papéis sexuais. Dessa forma, o princípio de Bateman explica papéis sexuais historicamente associados a machos e fêmeas.

Contudo, animais nem sempre se encaixam nessas regras, pois os papéis sexuais na natureza são bem mais diversos do que a dicotomia estabelecida entre machos e fêmeas pode sugerir. Não é incomum machos que cuidam de suas crias ou fêmeas que competem com outras fêmeas. Não é impossível, inclusive, observar um indivíduo de um sexo se comportando com o papel sexual atribuído ao sexo oposto. Interessada em fazer um estudo sistemático sobre a diversidade e possibilidade de mudanças de papéis sexuais, a pesquisadora sueca Malin Ah-king e sua equipe fizeram uma extensa compilação de dados sobre comportamentos e morfologias. A partir de suas observações, propuseram que o sexo e os papéis sexuais na natureza não podem ser vistos como uma dicotomia estática, mas como algo que na biologia é chamado de norma de reação. Normas de reação descrevem as diferentes formas que um organismo pode assumir, em função de mudanças no ambiente que ele ocupa. Sob essa perspectiva, sexo num sentido morfológico e comportamental pode ser entendido como um contínuo no qual os indivíduos e espécies ocupam a distribuição completa, embora mais comumente se encontrem nas extremidades dessa distribuição.

Um exemplo da plasticidade do sexo é a capacidade encontrada em algumas espécies – principalmente anelídeos, camarões, caracóis e peixes – de trocarem de sexo durante sua vida. Essa capacidade é chamada de hermafroditismo sequencial (Figura de abertura). Um outro estudo teórico sugeriu que esses indivíduos mudam de sexo porque isso aumenta seu sucesso reprodutivo. Apesar de a mudança de sexo ser vantajosa aos indivíduos nessas espécies, ela é impraticável em espécies com o aparato sexual mais complexo. Entretanto, nessas outras espécies, há plasticidade para outras características, como a própria a determinação sexual, como é o caso em muitas espécies de tartarugas e crocodilos, em que o processo de determinação sexual tem um importante componente ambiental (a temperatura influencia a definição do sexo).

Nos vertebrados que não trocam de sexo durante a vida, a determinação do sexo pode ocorrer de forma cromossomal ou ambiental. É possível, também, que ocorram ambos, como no lagarto Bassiana duperreyi (Figura 2). A análise filogenética feita por Ah-King mostra que houve trocas entre esses dois sistemas de determinação do sexo no passado, ou seja mesmo em espécies com alto grau de parentesco é possível que uma use o sistema genético e a outra ambiental. Ela mostra também que, dentro de um sistema de determinação sexual, há muita variação nos genes envolvidos na determinação sexual, no tamanho desses cromossomos, na combinação de cromossomos sexuais que estão associados à determinação de se um organismo será macho ou fêmea, ou na temperatura que induz a formação de machos. A Figura 3 ilustra o quão diferente sistemas de determinação do sexo podem ser ao longo da árvore filogenética. O estudo de Ah-king reforça que processos de determinação sexual são evolutivamente lábeis, mudando de modo recorrente ao longo da filogenia dos animais.

234
Figura 2: Bassiana duperreyi é uma espécie de lagarto que tem o sexo determinado tanto por fatores genéticos como ambientais. Imagem por Onesland – Own work, Public Domain.

Mesmo nas espécies em que o sexo é determinado geneticamente, o trabalho de Ah-king sugere haver plasticidade de papéis sexuais. Contudo, é mais difícil estudar a plasticidade de características relacionadas a papéis sexuais, uma vez que a análise é muitas vezes enviesada pelas características historicamente atribuídas aos sexos da nossa espécie, um viés que pesquisadores inevitavelmente carregam ao estudar esse tema. Além disso, para ser uma análise completa, é necessário um entendimento da ecologia em que vive o grupo estudado. Por exemplo, um pássaro pode apresentar baixo dimorfismo (a diferença física entre os sexos) num olhar desatento, mas os padrões de cores no ultravioleta podem ser bem distintos, e mais relevantes para a forma como eles enxergam as cores.

34
Figura 3: A variedade dos sistemas de determinação do sexo mostrada em filogenia disponível em Ah-King et al. (2010). Legenda (de cima para baixo): determinação de sexo dependente de temperatura; fêmea heterogamética (fêmeas geralmente geradas pela presença de dois cromossomos sexuais não homólogos ZW); macho heterogamético (machos geralmente gerados pela presença de dois cromossomos sexuais não homólogos XY); hermafroditismo; unisexualidade (indivíduos produzem apenas um tipo de gameta); haplodiplóide (machos são determinados por gametas não fecundados e fêmeas por gametas fecundados)

Também é fundamental colocar os achados num contexto filogenético, algo feito por Ah-king. Não podemos dizer que uma espécie de peixe que apresenta cuidado parental por parte do macho teve seu “papel sexual trocado”, já que essa é uma característica comum nos peixes, ainda que pouco usual nas outras espécies. Levando tudo isso em consideração, Ah-King mapeou em uma filogenia papéis sexuais clássicos em borboletas, peixes e aves, mostrando que mudanças de papéis sexuais numa escala filogenética é algo que ocorre várias vezes ao longo da evolução (Figura 4).

46
Figura 4: A ocorrência de mudança de papéis sexuais em borboletas, peixes e aves, em filogenia disponível em Ah-King et al. (2010). Legenda: em preto animais que apresentam inversão de papéis sexuais.

O trabalho de Ah-King expande nossa visão sobre o sexo, por vê-lo como apenas mais uma norma de reação – assim como vemos o comportamento, a porcentagem de gordura corporal, e certas medidas de inteligência. Essa proposta está de acordo com as recentes discussões acerca de gênero nas ciências sociais e tem o potencial de contribuir tanto para a discussão pública, como para a pesquisa sobre esse tema,  ao introduzir novas visões e ferramentas que nos permitem incluir e explicar interações não típicas na natureza (como por exemplo, a existência de animais transgêneros). Não obstante, toda nova teoria precisa ser olhada de uma forma crítica, não sendo esta uma exceção. Primeiramente, deve ser pontuado que a relação entre a anisogamia e a seleção sexual é solidamente estabelecida,  e não pode ser ignorada. Essa crítica foi o tema de artigos publicados em resposta àqueles que defendem a plasticidade dos papéis sexuais, em que é reiterada a forte influência da anisogamia na determinação de papéis sexuais, e seu apoio por estudos por dados experimentais. O artigo de Malin Ah-King e colegas não exclui a importância da anisogamia para explicar seleção sexual, ou o princípio de Bateman, mas enfraquece-os.

Em segundo lugar, é importante questionarmos se os achados de Malin Ah-King que apoiam a visão de que o sexo pode ser visto como um contínuo plástico não seriam apenas uma coleção de casos extraordinários, o que implicaria que a visão clássica continuaria sólida. Para testar isso, mais dados devem ser obtidos, preferencialmente tentando evitar os vieses que podem fortalecer a visão clássica.

Em suma, os pesquisadores expuseram uma ideia nova, de que os papéis sexuais podem ser entendidos como “apenas mais uma norma de reação”. Essa ideia pode ser aprimorada por mais pesquisas científicas, mas é necessário tratar essa hipótese com todo o rigor demandado e levar em conta o que já é bem aceito, por exemplo o princípio de Bateman. E assim entender em que contextos podemos utilizar a teoria mais clássica e em que casos devemos levar em conta a ideia da norma de reação. A plasticidade do sexo, caso seja estabelecida, pode tornar a discussão pública mais diversa e fundamentar uma maneira mais tolerante de pensar, uma vez que se trata de uma teoria que ao encontrar casos desviantes da norma tenta incluí-los em uma explicação mais geral ao invés de excluí-los colocando-os como exceções.

Carmen Melo Toledo

Graduanda de Ciências Moleculares, Universidade de São Paulo (USP)

Para Saber Mais:

G.A. Parker, R.R. Baker and V.G.F Smith; The origin and evolution of gamete dimorphism and the male-female phenomenon; Journal of Theoretical Biology (1972); vol. 36 pp. 529-553.

Knight ; Sexual stereotypes; Nature (2002); vol. 415, pp. 254–256.

Malin Ah-King, Sören Nylin; Sex in an Evolutionary Perspective: Just Another Reaction Norm; Evol Biol. (2010); vol. 37 pp. 234-246.

Philip L. Munday et al.; Diversity and flexibility of sex-chage strategies in animals; Trends in Exology and Evolution (2006); vol. 21, pp. 90-95;

Shine et al.; Co-ocurrence of multiple, supposedly incompatible modes of sex determination in a lizard population; Ecology Letters (2002); Vol. 5, pp. 486-489.

Göran Arnqvist et al.; Anisogamy, chance and the evolution of sex roles; Cell (2010); vol. 27 no. 5 pp. 260-264.

Tin Janicke et al.; Darwinian sex roles confirmed across the animal kingdom; Science Advance 2 (2016); e1500983

https://randyschickenblog.squarespace.com/home/2019/7/7/the-life-and-times-of-betty-the-transgender-chicken

Imagem de abertura: Semicossyphus reticulatus é um  peixe capaz de mudar de sexo ao longo da vida, no processo chamado hermafroditismo sequencial. Em 2017 essa transformação foi filmada e mostrada no primeiro episódio da série da BBC Earth chamada One Ocean II, foto por Ryokou man – Wikipedia.

O SARS-CoV-2 é capaz de infectar diferentes espécies?

Alguns relatos em diferentes meios de notícias indicam que diferentes animais podem ter sido infectados pelo SARS-CoV-2. Apesar disso, poucos desses relatos foram bem documentados do ponto de vista científico. Os estudos que visam entender a interação desse vírus com o seu receptor indicam que ele tem uma maior capacidade de infecção em humanos do que em outros animais.

Atualmente, são conhecidos diferentes coronavírus, como HCoV-229E, HCoV-OC43, HCoV-NL63, HCoV-HKU1, SARS-CoV, MERS-CoV e SARS-CoV-2, responsáveis por causar infecções do trato respiratório em humanos com diferentes graus de severidade. Todos eles possuem uma origem zoonótica em morcegos e roedores e foram transmitidas aos humanos por hospedeiros intermediários, como alpacas (Vicugna pacos), bovinos (Bos taurus), civetas (Paradoxurus hermaphroditus) ou dromedários (Camelus dromedarius). O SARS-CoV-2 possui uma sequência com homologia de 96% com o coronavírus de morcego RaTG13, isolado de Rhinolophs affinis. Quando ocorreu o primeiro contato do SARS-CoV-2 com a espécie humana ou outras espécies hospedeiras intermediárias ainda é um tópico de debate e estudos pela comunidade científica.

Dentre os coronavírus humanos, o SARS-CoV-2 obteve grande sucesso de infecção e é o responsável pela pandemia atual de COVID-19 (Corona Virus Disease 2019). A COVID-19 foi inicialmente caracterizada como uma doença respiratória grave e, atualmente, tem se mostrado uma doença que se apresenta como diferentes síndromes em jovens ou adultos, incluindo síndrome respiratória grave, distúrbios de coagulação, tempestade de citocinas e síndrome vascular similar à doença de Kawasaki.

O SARS-CoV-2 utiliza a enzima conversora de angiostensina 2 (ACE2) como receptor de ligação para invadir as células eucarióticas. A interação entre aminoácidos em posições específicas da glicoproteína S do SARS-CoV-2 e a proteína ACE2 são críticos para a afinidade e eficiência da infecção. Pelo menos cinco nucleotídeos da glicoproteína S são considerados críticos para infecção e são relacionados à capacidade de ligação desse vírus ao ACE2 humano. Variações nos sítios de interação do ACE2 com glicoproteína S podem indicar diferenças na capacidade de ligação e infecção do SARS-CoV em diferentes espécies.

A análise genômica comparativa dos genes ortólogos do ACE2 de diferentes espécies foi realizada por diferentes grupos de pesquisa, para tentar entender a dinâmica evolutiva que permitiu o sucesso na adaptação do SARS-CoV-2 para a infecção dos humanos. Na análise de cinco sítios importantes de ACE2 para a ligação do vírus, foi sugerido que o SARS-CoV-2 possui a capacidade de ligação a diferentes espécies, como cachorro (Canis lupus familiaris), gato (Felis catus), cavalo (Equus caballus), gado (Bos taurus), ovelha (Ovis aries), entre outros.

Uma análise mais abrangente de 30 sítios do ACE2, relacionados à função fisiológica ou ligação com o vírus em 70 espécies de mamíferos, evidenciou que os humanos (Homo sapiens) compartilham com os grandes macacos (família Hominoidea) os mesmos aminoácidos nas 30 posições da proteína, e existe apenas uma divergência com espécies de macacos do velho mundo (família Cercopithecidae). Isso mostra que os principais sítios de ACE2 estão conservados nesses primatas e, considerando-se essa proteína, o SARS-CoV-2 tem o mesmo potencial de infecção nessas espécies, sendo essa uma preocupação já demonstrada por especialistas da vida selvagem e saúde de grandes macacos. Quando foram comparados os mesmos sítios de ligação com espécies filogeneticamente mais distantes ao Homo Sapiens, foi observada uma maior diversidade entre as espécies. Primatas como os macacos do novo mundo (Platyrrhini) apresentam diferenças em sítios importantes que potencialmente alteram a capacidade de ligação ao vírus. Os genes ACE2 ortólogos de gatos (Felis catus) e cachorros (Canis lupus familiaris) apresentam 77% e 73% de identidade com o ACE2 considerando os mesmos 30 sítios, o que indica uma menor afinidade de ligação ao vírus e a proteína. Estudos recentes evidenciaram que, em uma frequência baixa, gatos e cachorros podem se infectar com o SARS-CoV-2 de maneira assintomática, provavelmente de seus donos infectados. A ACE2 de pangolim (Manis javanica), considerado um possível hospedeiro intermediário para SARS-CoV-2, apresenta aproximadamente 85% de similaridade com a ACE2 de humanos; entretanto, se considerarmos apenas os 30 sítios de ligação ao vírus, a similaridade é de apenas 66%.

Quando comparamos a sequência do gene ACE2 nas diferentes populações humanas (acessíveis pelo projeto mil genomas), são observadas variantes raras (frequências < 0,005) na sequência codificante e diversos polimorfismos (SNPs), principalmente na região intrônica do gene. Alguns desses polimorfismos já foram associados com doenças cardiovasculares em estudos de associação genômica ampla (Genome-wide association study – GWAS), mas até o momento não foram associados diretamente com a COVID-19. Os 30 sítios importantes na interação com o vírus não apresentam polimorfismos entre as populações humanas, e as espécies de Neanderthal (Homo neanderthalensis) e Denisova compartilham os mesmos aminoácidos com o Homo sapiens. Isso mostra que o SARS-CoV-2 tem potencialmente a mesma eficiência de infecção em todas as populações humanas, considerando os sítios de ligação ao ACE2, algo que é observado na atual pandemia de COVID-19.

Até o momento ainda não se conhece o animal originário do SARS-CoV-2 e seus intermediários até a infecção no seu hospedeiro final, o Homo sapiens. A ideia de que a infecção por SARS-CoV-2 pode ser ou se tornar epizoótica (que ocorre ao mesmo tempo em vários animais uma mesma área geográfica) não parece ser provável, quando consideramos a sequência da proteína ACE2 utilizada como receptor celular pelo vírus. Espécies de grandes primatas são os animais que possivelmente correm mais risco de uma contaminação por esse vírus, e, apesar de casos esporádicos em animais domésticos como gatos e cachorros, ainda não existem evidências robustas que indiquem uma transmissão entre esses animais ou que eles possam infectar outros humanos. Além das variantes que existem nas regiões de ligação do vírus com o receptor ACE2, outros fatores, como os níveis de expressão dessa proteína nos tecidos e o sistema imune desses animais, podem ser barreiras à transmissão e ao desenvolvimento de uma doença semelhante aos humanos nessas espécies.

O SARS-CoV-2 parece ter se tornado um vírus com alta eficiência para a infecção de qualquer população humana quando analisamos a sequência do seu receptor ACE2. Possivelmente, as diferenças observadas nas frequências, suscetibilidades, sintomas, mortalidade de COVID-19 entre as populações poderão ser explicadas por (ou atribuídas a) genes relacionados à resposta imunológica ao vírus, outras regiões do gene ACE2 (por exemplo, regiões reguladoras que modulam a expressão do gene), outros genes ainda não estudados e fatores não biológicos (sociais, culturais e econômicos).

Vinicius de Albuquerque Sortica

Departamento de Genética/ UFRGS

Para saber mais:

Nicola Decaro e Alessio Lorusso (2020) Novel human coronavirus (SARS-CoV-2): A lesson from animal coronaviruses. Veterinary Microbiology.

Marcel Levi e outros (2020) Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematology.

Bibiana Sampaio de Oliveira Fam e outros (2020) ACE2 diversity in placental mammals reveals the evolutionary strategy of SARS-CoV-2. Scientific Electronic Library Online.

Smriti Mallapaty (2020) Coronavirus can infect cats — dogs, not so much. Nature.

Smriti Mallapaty (2020) Dogs caught coronavirus from their owners, genetic analysis suggests. Nature.

Joint Statement of the IUCN SSC Wildlife Health Specialist Group and the Primate Specialist Group (2020) Great apes, COVID-19 and the SARS CoV-2http://www.internationalprimatologicalsociety.org

Demorado, né minha filha? O longo caminho dos medicamentos até você

Na última semana, a discussão sobre o uso da hidroxicloroquina no tratamento da covid-19 tomou grandes proporções, com posições apaixonadas e torcidas como as de clássicos do brasileirão. É possível que lhe acusem de defender o vírus se você apenas apontar que não há testes convincentes sobre a eficácia da droga. Torcidas à parte, de fato, não temos até o momento estudos apropriados sobre a eficácia da droga contra a covid-19.

Alguns estudos já relataram que moléculas como a cloroquina e a hidroxicloquina seriam ativas contra uma variedade de vírus. Sua eficácia foi atribuída a diferentes mecanismos. Um dos mecanismos propostos é que a droga poderia alterar a glicosilação da enzima conversora de angiotensina-2, o mesmo receptor que o vírus SARS-CoV-2 usa para entrar nas células. Dados os relatos prévios de que a cloroquina teria um papel anti-viral, foi um passo natural investigar se ela seria útil no tratamento da covid-19. Passando para os testes em voluntários humanos, um grupo chinês relatou em um periódico científico que “até agora, resultados de mais de 100 pacientes mostraram que o fosfato de cloroquina é superior ao tratamento controle na inibição da exacerbação de pneumonia”, sem fornecer mais detalhes. Após essa carta, um estudo francês, com 20 pacientes, colocou a cloroquina nos principais noticiários.

No Brasil, em meio a calorosas discussões, um paciente influente relata que foi tratado com um conjunto de medicamentos: antibiótico, anticoagulante, corticoide (anti-inflamatório) e também a hidroxicloroquina. O paciente não precisou passar para a Unidade de Terapia Intensiva. De acordo com ele, “fui melhorando, dois, três, quatro, cinco dias… depois eu fiquei relativamente bem”. Esse paciente era um médico e decidiu, após essa experiência, “defender [o uso da hidroxicloroquina] para os pacientes internados. Ele acredita não se pode aguardar por muitos meses até que sejam publicados grandes estudos sobre o medicamento”. Em nossa era de alta conectividade, relatos pessoais podem ganhar grande visibilidade e influenciar a percepção das pessoas sobre uma possível droga, mesmo nos casos em que estudos científicos ainda são inconclusivos.

Analisando o exemplo, podemos dizer o que levou à melhoria do quadro do paciente? Foi o antibiótico, o anticoagulante, o corticoide ou a hidroxicloroquina? Como seria a progressão natural da doença sem nenhuma medicação? Afinal, viroses costumam seguir um curso natural até seu término, caso não haja maiores complicações (por exemplo, infecção bacteriana, choque séptico, descompensação de outras doenças) e a maioria dos casos de covid-19 têm sintomas mais leves, não sendo de espantar, em termos de probabilidade, que alguém não siga para a UTI. Fica claro, em suma, que não é possível afirmar se a melhora pode ser atribuída à administração da cloroquina com base nas observações de um único caso. Para prevenir essas arbitrariedades são necessários experimentos controlados. Qualquer medicamento, antes de sua aprovação, deve seguir estritamente as etapas de um ensaio clínico, isto é, uma análise sistemática dos seus efeitos em voluntários humanos. Os objetivos dos ensaios clínicos são sustentar a eficácia e a segurança de um fármaco. Em suas várias etapas, os ensaios visam descobrir ou confirmar os efeitos da droga, identificar as reações adversas e estudar a farmacocinética dos ingredientes ativos.

No Brasil, os ensaios clínicos são regulamentados pela Agência Nacional de Vigilância Sanitária (Anvisa). O regulamento para a realização de ensaios clínicos com medicamentos no Brasil (RDC 09/2015) foi publicado no Diário Oficial no dia 03 de março de 2015 e segue as diretrizes internacionais do setor. Esses ensaios precisam ser aprovados não somente pela Anvisa, mas também pelos Comitês de Ética em Pesquisa, para garantir a conduta ética no decorrer do ensaio, assegurando direitos, segurança e bem-estar dos participantes da pesquisa.

Antes de serem testados em voluntários humanos, os medicamentos potenciais são identificados em etapas chamadas de “pré-clínicas”. Essas pesquisas envolvem metodologias que buscam por princípios ativos, que são então testados em culturas de células e/ou animais. Nessa fase pré-clínica são testados os efeitos farmacológicos e terapêuticos da droga e também a toxicidade em animais. No caso da cloroquina, em culturas de células e estudos com animais, os efeitos contra diversos vírus foram variáveis. Em células infectadas pelo vírus Epstein-Barr, a cloroquina aumentou a replicação viral. Em outro estudo, a droga reduziu a transmissão do vírus Zika para a prole de cinco camundongos infectados. A cloroquina também inibiu a replicação do vírus Ebola in vitro (isto é, em células em cultura), mas causou um rápido agravamento da infecção em porquinhos-da-índia e não fez diferença na mortalidade em camundongos e hamsters. Na infecção pelo vírus chikungunya, a cloroquina teve resultados promissores em estudos de laboratório, mas piorou o curso clínico da infecção em macacos.

Por mais que um achado em culturas de células ou num animal de laboratório seja promissor, isso não garante que o remédio será eficaz ou seguro em humanos. Para isso, são necessários outros ensaios. Assim, após a fase pré-clínica, são iniciados os ensaios clínicos com quatro fases distintas:

– Fase I: avaliação da tolerância e segurança do medicamento, em um número restrito (20 a 100) de voluntários sadios. Nessa fase, são estudados também os perfis farmacocinéticos do princípio ativo, ou seja, todo o caminho percorrido pela molécula no corpo, desde sua absorção até sua excreção.

– Fase II: avaliação da eficácia da medicação em voluntários portadores da condição, ainda em número restrito (100 a 300), para avaliar a eficácia terapêutica. É nessa fase que são determinadas as doses da medicação e o regime terapêutico. A segurança continua a ser avaliada nesse grupo um pouco maior de voluntários.

– Fase III: levantamento de mais informações sobre segurança e eficácia, estudando diferentes grupos de voluntários e diferentes dosagens, e usando o medicamento em combinação com outros. O número de voluntários geralmente varia de centenas a cerca de dez mil pessoas. Nessa fase é realizada a demonstração ou confirmação do benefício terapêutico do medicamento. Ela pode durar de meses a anos e, dependendo do risco-benefício do tratamento, o medicamento pode ser aprovado.

– Fase IV: acompanhamento do produto já no mercado. Nessa fase, há otimização do uso do medicamento, avaliação de interações medicamentosas e de efeitos adversos adicionais. De milhares a milhões de usuários entram na análise, também chamada de farmacovigilância.

O planejamento da fase III é extremamente importante para garantir resultados confiáveis. É essencial que esses estudos incluam um grupo controle que não receberá a medicação. O grupo controle e o grupo experimental devem ser idênticos em todos os aspectos relevantes, exceto pela medicação a ser testada grupo experimental. Muitas doenças (e esse também é o caso da covid-19) podem ter uma evolução diferente em pessoas diferentes. É possível que os efeitos das medicações também sejam diferentes entre faixas etárias, sexos e até grupos com diferentes ancestralidades. A farmacocinética do princípio ativo também pode ser diferente nesses grupos. Assim, o resultado descrito pelo paciente influente referido acima não necessariamente será o mesmo em outros pacientes. Por isso, os ensaios clínicos usam grandes grupos idênticos para a comparação. A comparação dos resultados do grupo experimental com o grupo controle, por sua vez, ajuda a descartar efeitos aleatórios. Um efeito facilmente descartado nessas comparações é a cura espontânea da doença, que no caso da covid-19, acontece em 85% dos casos. A pergunta que a fase III dos ensaios busca responder é se os voluntários que receberam a medicação tiveram uma evolução do quadro melhor do que os voluntários que não receberam.

Outro aspecto importante dessa comparação dos grupos controle e experimental é o familiar efeito placebo. O efeito placebo é a melhoria mensurável, observável ou sentida na saúde que não é resultado da ação do princípio ativo. Há inúmeras explicações para o efeito placebo, incluindo uma diminuição da percepção dos sintomas pela simples confiança no tratamento e interação com o médico. Por isso, em muitos estudos os grupos controle e experimental recebem pílulas de aparência idênticas, mas apenas as do grupo experimental contêm o medicamento que está sendo testado; o outro grupo recebe uma pílula placebo (sem o medicamento). Se os dois grupos tiverem os mesmos indicadores da doença, o medicamento não tem ação contra ela. Os dois grupos podem ter evolução diferente da doença quando comparados a um terceiro grupo sem nenhum tipo de intervenção. Esse resultado positivo é justamente o efeito placebo. Outro fato curioso é que as pessoas que administram as pílulas também influenciam, involuntariamente, as observações e medições. Os estudos ideais são duplo-cegos, ou seja, nem os voluntários e nem os agentes de saúde sabem quem recebeu o placebo até a conclusão do teste. Essa informação é de acesso exclusivo aos organizadores do ensaio clínico.

A hidroxicloroquina já é um medicamento aprovado e liberado para condições como malária, lúpus, artrite reumatoide e outras doenças inflamatórias. Portanto, sua segurança já foi avaliada em ensaios clínicos na fase I. O amplo uso de hidroxicloroquina expõe alguns pacientes a efeitos raros, mas potencialmente fatais, incluindo reações cutâneas adversas graves, insuficiência hepática fulminante, perda de visão e arritmias ventriculares (especialmente quando prescritas com azitromicina).  Hospitais da Suécia interromperam o tratamento com cloroquina devido aos efeitos colaterais e um editorial publicado no importante periódico The BMJ, afirma que o uso da cloroquina ou hidroxicloroquina no tratamento da covid-19 é prematuro e potencialmente prejudicial.

Mesmo nos ensaios realizados para o tratamento de outros vírus, a tradução dos estudos in vitro para clínica levou a decepções. Por exemplo, a cloroquina inibiu o vírus da dengue em algumas culturas celulares, mas falhou em reduzir a doença em um estudo controlado com 37 pacientes. Embora estudos in vitro sugerissem atividade contra o vírus da influenza, a cloroquina não impediu a infecção em um grande estudo randomizado (1496 voluntários), duplo-cego, controlado por placebo. No caso da covid-19, a carta publicada pelo grupo chinês, relatando o efeito da droga em 100 pacientes, não apresentava nenhum detalhe sobre os ensaios. Um estudo randomizado controlado por placebo usou duas doses diferentes de hidroxicloroquina em 62 pacientes. Nesse estudo, ainda não revisado por pares (isto é, por outros especialistas) para a publicação, foi relatada uma melhoria pequena no grupo de tratamento com doses mais altas. No entanto, há falha na descrição do protocolo, os resultados no grupo de doses baixas não foram descritos e o estudo parece ter sido interrompido prematuramente. O estudo mais citado, de um grupo francês, tratou 20 pacientes e relatou um resultado positivo. O relato é alvo de várias críticas: seis pacientes abandonaram o tratamento; a medida de eficácia foi a carga viral, e não um resultado clínico; e as avaliações foram feitas no sexto dia após o início do tratamento. Portanto, sem os testes controlados em grandes grupos de voluntários, é muito difícil compreender a eficácia da medicação, particularmente quando os efeitos são pequenos. Atualmente, pelo menos 80 ensaios de cloroquina, hidroxicloroquina ou ambos, às vezes em combinação com outros medicamentos, foram registrados em todo o mundo. No Brasil, os ensaios clínicos em andamento podem ser acessados na página da Anvisa. Há dois ensaios autorizados pela Anvisa para estudar a eficácia da hidroxicloroquina no tratamento da covid-19.

O longo caminho envolvido na aprovação de um medicamento parece frustrante, particularmente quando estamos imersos numa pandemia e queremos o uma cura disponível rapidamente. No entanto, as provas clínicas existem para proteger nossa segurança e bem-estar, não para nos privar de acesso a medicamentos. Num momento em que a ansiedade para resolver a doença pode nos levar a tomar decisões irracionais, contar com ensaios clínicos é particularmente importante. Isso não quer dizer que não podemos fazer ajustes aos protocolos num momento de crise. De fato, houve implementação de mudanças para agilizar todo o processo nas principais agências do mundo. A Anvisa definiu normas extraordinárias para avaliação de pedidos de registro de medicamentos e produtos biológicos para prevenção e tratamento da covid-19. Os protocolos de pesquisa sobre a covid-19 também estão sendo analisados em caráter de urgência e com tramitação especial na Comissão Nacional de Ética em Pesquisa (Conep). Enquanto isso, a Academia Brasileira de Ciências e a Academia Nacional de Medicina alertam em carta que o uso precipitado de um medicamento baseado apenas em resultados preliminares, pode trazer consequências graves e irreparáveis para a população.

Não há evidências de que a hidroxicloroquina impeça a transmissão do vírus SARS-CoV-2 e tampouco seja uma cura para a covid-19. No momento não há evidências conclusivas de que ela seja eficaz para pacientes em caso grave, mas é uma decisão médica se ela deve ou não ser administrada. Seu uso nessas situações será melhor apoiado quando forem concluídos ensaios clínicos, que podem levar ainda algum tempo para sua conclusão. O mais importante é que, mesmo nos cenários mais otimistas sobre a sua eficácia no tratamento da covid-19, o uso da cloroquina será uma medida complementar. Não esperamos que ela cure todos os pacientes, ou que seja o tratamento mais eficaz disponível. O principal tratamento, hoje, para um paciente em estado critico é a respiração mecânica. Mesmo que a hidroxicloroquina fosse um tratamento que não oferecesse riscos (o que não é o caso), o principal dano, dada as proporções das discussões, seria a falsa esperança que pode resultar no relaxamento das medidas de isolamento, realmente eficazes contra a propagação do vírus. Outro perigo potencial está no incentivo ao autodiagnóstico e autotratamento. Infelizmente, ainda não temos um tratamento eficiente ou uma vacina neste momento e o que pode evitar o colapso do sistema de saúde é o isolamento social. Fique em casa, se puder.

Tatiana Teixeira Torres (USP)

Para saber mais:

Revisão mostrando um histórico da regulamentação sobre os ensaios clínicos no Brasil, apresentando os marcos e últimas atualizações. Para a revisão foram utilizados trabalhos publicados entre 2010 e 2016 e que tratando da regulamentação da pesquisa clínica no Brasil, seu histórico e formas de avaliação.

Matéria do jornal digital Nexo, com o histórico da polêmica da cloroquina no tratamento da covid-19. Também inclui uma entrevista com a pesquisadora Natália Pasternak, presidente do Instituto Questão de Ciência, uma organização voltada pata a divulgação científica.

Editorial do periódico BMJ (British Medical Journal), discutindo as principais publicações alegando eficácia das duas moléculas, cloroquina e hidroxicloroquina, no tratamento de infecções virais, em particular a covid-19.

Como enfrentar o novo coronavírus? Ouvindo cientistas. Investindo na ciência. Refutando a pseudociência.

O conhecimento e a ciência são nossa melhor vacina para enfrentar crises, como a pandemia do novo coronavírus

A epidemia do novo coronavírus gera muitas perguntas. De onde veio o vírus? Como (e com qual rapidez) a doença que ele causa se espalha? Como nosso sistema imune pode derrotá-lo? Remédios ou vacinas são viáveis? Não são perguntas quaisquer: as respostas vão informar políticas públicas. Se as políticas forem bem implementadas, fazendo uso correto das respostas encontradas, vidas serão salvas.

As respostas virão do trabalho de cientistas. O caminho que será percorrido é cheio de desafios, e o sucesso não é garantido. Entretanto, para responder a perguntas sobre o novo coronavírus, a ciência é nosso melhor instrumento. Dada a importância da ciência nesse momento de nossas vidas, cabe perguntar: como a ciência consegue construir o conhecimento a respeito do coronavírus?

De onde veio o vírus?

Nos primeiros momentos da epidemia, amostras de pacientes foram colhidas e o genoma do vírus foi sequenciado. A partir dessas sequências, foram construídas filogenias, que são árvores que expressam o parentesco do novo vírus com outras espécies. Essas análises evolutivas mostraram que o novo vírus é muito semelhante a tipos de coronavírus que infectam pangolins e morcegos. O vírus presente em animais silvestres sofreu mutações, e essa versão modificada tornou-se eficiente para infectar humanos.

Há muito conhecimento prévio embasando esses estudos. Há décadas usamos sequências de DNA para inferir a história evolutiva de diferentes espécies, sejam vírus, plantas ou animais. Essas análises usam ferramentas computacionais e matemáticas, desenvolvidas por biólogos, estatísticos e cientistas computacionais. A compreensão de que vírus de animais podem invadir humanos é outro tema intensamente estudado, e o alarme já foi soado várias vezes para a seriedade dessa ameaça. A rápida identificação das linhagens que chegaram ao Brasil foi feita por análises genômicas conduzidas por pesquisadores do Instituto de Medicina Tropical e do Instituto Adolfo Lutz de São Paulo, graças a experiência adquirida em estudos anteriores com o vírus Zika.

O sucesso em rapidamente identificar o vírus causador das pneumonias nos hospitais de Wuhan só existiu porque a ciência já possuía uma sólida base no sequenciamento e na análise de genomas, no estudo de evolução viral e em análises epidemiológicas. E, no caso do esforço brasileiro para sequenciar o vírus, vale acrescentar: o trabalho foi possível porque duas pós-doutorandas, que recebem bolsa de estudos, estavam treinada e prontas para fazer as análises.

Com que velocidade a doença se propaga?

Essa talvez seja a principal pergunta que enfrentamos nessa crise. Se o vírus se propagar lentamente teremos tempo e condições de tratar os doentes, e a crise será mais tolerável. Entretanto, uma propagação rápida irá sobrecarregar o sistema de saúde, e a mortalidade será elevada. Então é crítico responder: com base no que sabemos sobre o comportamento do vírus, quantos novos infectados esperamos na próxima semana? Como reduzir a taxa de propagação da doença? Para responder a essas questões, usamos modelos matemáticos que conjugam fatores que determinam a taxa de propagação: o número de pessoas que um indivíduo contaminado infecta, a facilidade de contágio, a frequência com que pessoas interagem, e o grau de imunidade na população. De posse dessas informações, fazemos contas e usamos simulações para fazer as previsões.

As previsões da propagação da doença feitas pelos modelos são imensamente importantes para políticas de saúde pública. Um trabalho  feito por pesquisadores do Imperial College previu que haveria uma imensa sobrecarga no sistema de saúde do Reino Unido, a não ser que medidas rígidas de distanciamento social fossem impostas. Esse trabalho influenciou governantes do Reino Unido e dos Estados Unidos, que passaram a apoiar medidas mais efetivas de distanciamento social. Tal estudo só foi possível porque havia um grupo de pesquisadores treinados em epidemiologia, com conhecimentos computacionais e matemáticos. O pesquisador que liderou o trabalho do Imperial College é formado em física teórica, um campo extremamente matemático e que também lida com dados cheios de incertezas.

A eficácia das rígidas restrições a deslocamentos implementadas na China neste ano também já foi avaliada num estudo científico. Utilizando dados sobre deslocamentos individuais, fornecidos pela Baidu (uma empresa chinesa de telecomunicações), um grupo internacional mostrou que a redução na mobilidade está relacionada com o decréscimo na taxa de expansão do vírus. Novamente, é interessante notar que o cientista que liderou a pesquisa é professor num departamento de zoologia, e utiliza abordagens ecológicas evolutivas no estudo de doenças infecciosas.

Aqui no Brasil também há grupos trabalhando na modelagem da COVID-19. Na Fundação Oswaldo Cruz (FIOCRUZ), um grupo do Programa de Computação Científica modelou o impacto do isolamento. Um outro grupo, que reúne médicos e epidemiologistas da UnB, UFRJ e USP, fez uma nota técnica sobre diferenças entre municípios brasileiros na propagação da doença. Um grupo baseado em São Paulo vem divulgando publicamente prognósticos para a doença, com base em seus modelos matemáticos. Nessa equipe, há físicos, ecólogos, e evolucionistas. Novamente, o mesmo recado: pesquisadores formados em diversas áreas – algumas distantes das áreas médicas ou do estudo de vírus – possuem conhecimentos que, reunidos, ajudam a alcançar respostas sobre a pandemia.

Teremos remédios?

Para decidir quais drogas devemos usar, precisamos entender como cada uma funciona, como interagem com as moléculas do vírus, e quais drogas existentes são seguras. Um grupo do Laboratório Nacional em Biociências está triando milhares de fármacos, em busca daqueles que, de acordo com simulações computacionais de interações moleculares, podem interferir em proteínas essenciais para a reprodução do vírus. Alvos promissores serão testados em células infectadas pelo coronavírus. Nessa empreitada, estão unidos pesquisadores especializados em biologia computacional, modelagem molecular, bioquímica, biologia celular e virologia. Outra frente envolve testar a eficácia de drogas previamente empregadas para outras doenças, mas cuja eficácia ou segurança para tratar o COVID-19 ainda é desconhecida, como é o caso da cloroquina. No Brasil, novos tratamentos com drogas já conhecidas estão sendo testados para a COVID-19, em trabalhos que envolverão 18 laboratórios, coordenados pela FIOCRUZ. Para comprovar a eficácia de uma droga, dependemos de especialistas em farmacologia, estatística, saúde pública e ética em pesquisa. Sem profissionais treinados nessas diversas frentes e sem instituições de pesquisa bem organizadas e financiadas, não avançamos.

Conseguiremos produzir uma vacina? 

Muitas doenças humanas foram essencialmente erradicadas pelo emprego de vacinas. Conseguiremos o mesmo feito com a COVID-19? Neste exato momento há muitos grupos de cientistas tentando desenvolver uma vacina. Um deles é a equipe do Laboratório de Imunologia do Instituto do Coração, em São Paulo.

A estratégia desse grupo é imunizar as pessoas com proteínas que são semelhantes às do vírus, estimulando o corpo a produzir anticorpos e células imunes especializadas em atacar e neutralizar o invasor. Qual proteína viral usar? Eles apostam numa que está presente na cápsula viral, sendo justamente aquela usada pelo coronavírus para entrar nas células humanas. A estratégia vai funcionar? Não sabemos. Isso depende de como a proteína é capaz de ativar o sistema imune, da segurança de injetá-la em humanos e também da duração da imunidade gerada. Somente investigando poderemos saber a resposta.

Sabemos que qualquer chance de chegar a uma vacina só existe porque há uma comunidade científica altamente treinada — tanto no exterior, quanto no Brasil — com experiência em imunologia e bioquímica. Se não houvesse especialistas nessas áreas no Brasil, se seus laboratórios não estivessem equipados e suas equipes treinadas e financiadas, não poderíamos participar desse processo.

Dá para tolerar a pseudociência?

Há outra forma, distinta do recurso à ciência, para responder às perguntas sobre o coronavírus e a COVID-19? Respostas que recorrem ao sobrenatural podem trazer conforto a alguns, funcionar como placebo a outros, mas não vão gerar vacinas eficazes, não vão fazer predições precisas sobre a taxa de expansão viral, não vão permitir que drogas tenham sua eficácia testada. A ciência não é a única forma de ver o mundo, e tampouco nos dá todas as soluções, mas ela é capaz de oferecer respostas instrumentais e poderosas no processo de tomada de decisões.

Diante do atual cenário de pandemia, é curioso lembrar que há dois meses uma das mais sólidas áreas do conhecimento científico, a teoria da evolução, foi atacada num artigo publicado na Folha de São Paulo (ao qual eu e outros respondemos). O autor do ataque, Marcos Eberlin, é um criacionista, e crê que as formas vivas na terra são fruto do trabalho de um “planejador”, cuja identidade não conhecemos. Suas críticas à teoria da evolução são uma série de argumentos pseudocientíficos, sequer endossados por teólogos ou religiosos. Eberlin é coordenador do “Núcleo de Pesquisa de Design Inteligente”, sediado na Universidade Presbiteriana Mackenzie. O que esse núcleo de pesquisa anti-evolucionista produziu recentemente? Não se tem notícia de que algo útil para enfrentar o coronavírus tenha saído de lá.

Por que retomo esse frustrante negacionismo científico, dirigido à evolução, no contexto da COVID-19? Retomo porque a pseudociência não ajuda em tempos de crise, apenas confunde. Há como rejeitar evolução, mas ao mesmo tempo usar uma árvore filogenética para entender a origem e evolução do vírus? Rejeitar a seleção natural e investigar a resistência às drogas antivirais? Impossível. Não dá para negar evolução e ao mesmo tempo querer que a ciência nos ajude num momento de apuro. Afinal, a ciência que nos ajuda a lutar contra o vírus é a mesmíssima que sustenta a teoria da evolução. Negando-se uma, nega-se a outra. Nesse momento de crise devemos entender finalmente que é importante que recursos públicos não sejam desviados da ciência para a pseudociência. Devemos também entender que, sem apoio à sua comunidade científica, nas mais diversas áreas, inclusive nas ciências humanas e sociais, um país fica privado de dar resposta a muitas ameaças, como as novas doenças que nos acometem. Não financiar a ciência nacional é correr riscos.

Seis lições vindas de uma pandemia

É preciso reconhecer a importância da ciência, pois ela nos traz informação baseada em evidências, fundamentais para a tomada de decisões.

Precisamos afastar a pseudociência, que confunde e distrai, tirando nosso foco das questões que devem nos ocupar.

É preciso entender — agora e no futuro — que apoiar a ciência não consiste apenas em despejar recursos para resolver o problema que agora se apresenta (ainda que esses recursos sejam necessários). A resolução de problemas depende de uma comunidade científica previamente treinada, cobrindo uma gama ampla de especialidades, e com recursos para manter seus laboratórios e equipes. Sem essa base, não há como esperar resultados a curto prazo.

Os caminhos da ciência não são lineares. Investimento em física teórica forma pesquisadores que modelam pandemias. Treinamento em teoria evolutiva permite a compreensão da origem do novo coronavírus. Pesquisa em ciências humanas e sociais ajudam a entender a tomada de decisão e os comportamentos das pessoas. Pesquisa filosófica nos auxilia a entender e, fundamentalmente, a lidar com dilemas éticos que uma situação de crise, como a de uma pandemia, nos apresenta. Para resolver problemas complexos precisamos de um amplo leque de disciplinas.

De fato, as humanidades e as ciências sociais— tão atacadas pelo atual governo, por serem supostamente “pouco úteis” — dão contribuições cruciais. Na hora de definir estratégias de isolamento, é essencial saber a densidade populacional em diferentes bairros, a composição típica das famílias em diferentes classes sociais, a distribuição etária em diferentes regiões do país e do mundo, a melhor estratégia de transmitir conhecimento ao público. É necessário aprender com pandemias passadas, como a gripe espanhola de 1918, investigando os erros e acertos daquela época. Esses desafios são o domínio de geógrafos, demógrafos, sociólogos, educadores, historiadores e filósofos.

Finalmente, é preciso ser crítico e atento aos limites da ciência. Por exemplo, os modelos matemáticos usados para prever a propagação da doença não são precisos. Isso é esperado: os modelos dependem dos dados de que dispomos, que muitas vezes são imperfeitos, como é o caso do número real de infectados em cada país, ou a facilidade com que os indivíduos se tornam imunes. Essas incertezas tornam mais difícil o processo de tomar decisões. Ainda assim, é importante que governantes saibam que as decisões baseadas em ciência, mesmo carregando incertezas, são preferíveis à alternativa de decisões sem embasamento científico, fundamentados somente em opiniões e preconceitos.

O recado é claro: uma sociedade com cientistas bem treinados, instituições científicas bem equipadas e financiadas, e com investimento na educação de jovens, habilitando-os a serem os cientistas de amanhã, estará mais preparada para enfrentar crises. Neste momento vivemos a pandemia do novo coronavírus. No futuro, poderá ser outra doença, o aquecimento global, ou os efeitos da poluição.

 

Diogo Meyer

Universidade de São Paulo

 

Sugestões de Leitura

The proximal origin of SARS-CoV-2”, de Kristian G. Anderson e coautores, publicado na Nature Medicine em 17 de março.

É um artigo que situa o novo coronavirus em relação àqueles que infectam outras espécies.

 

Why Trust Science?” De Naomi Oreskes. Princeton University Press, 2019.

Um livro livro discute a forma como a confiança no conhecimento científico é construída.

 

Imune” de Matt Richtel.  Harper Collins, 2019.

Um livro que apresenta de modo acessível os princípios básicos do funcionamento do sistema imunológico

A origem de novos vírus: A COVID-19 e outras histórias

Assim como muitos outros vírus, estudo recente aponta que o vírus causador da COVID-19 evoluiu a partir de um hospedeiro animal e não de manipulação humana intencional.

Escrevo esse post da minha casa, em São Francisco (Califórnia), onde desde o inicio da semana passada o governo decretou quarentena para todos os moradores. Sei que muitos de vocês, leitores, estão em uma situação parecida: em casa, sem poder ir ao trabalho, a bares e restaurantes ou ao cinema, e com filhas e filhos sem aulas presenciais, demandando nossa atenção e nosso cuidado a todo minuto. Apesar de tentar estabelecer uma nova rotina, é inegável que a situação atual gera apreensão e desconforto. Então, saiba que você não está sozinha ou sozinho nesse momento: o mundo todo está vivendo essa mesma angústia. Mas, nunca é demais reforçar que as medidas de isolamento social que tomamos hoje, por mais duras que possam parecer, salvarão a vida de muitos nos próximos meses. E que é extremamente necessário, talvez mais do que nunca, ouvirmos os cientistas e seguirmos suas recomendações. Voltarei a esse ponto ao final do texto.

Primeiro, vamos dar “nome aos bois”. Ao estudar em detalhe esse novo vírus e compará-lo a outros vírus já conhecidos, o Grupo de Estudos de Coronaviridae do Comitê Internacional de Taxonomia de Vírus, entidade mundial responsável pela classificação dos vírus, decidiu nomear essa nova espécie viral de SARS-CoV-2, devido à semelhança genética entre esse novo vírus e aquele causador da Síndrome Respiratória Aguda Grave (SARS). E se olharmos com um pouco mais de cuidado, o nome faz muito sentido:  SARS vem do nome da manifestação clínica causada pelo vírus, CoV indica que esse vírus é um coronavírus, e 2 pois já conhecemos um outro coronavírus, causador da pandemia de SARS em 2003, cujo quadro clínico é semelhante ao que observamos nos pacientes de COVID-19 de hoje. E de onde vem o nome COVID-19? Em Fevereiro desse ano, a Organização Mundial de Saúde (OMS) decidiu nomear a doença de COVID-19, seguindo os acordos internacionais estabelecidos entre a OMS e outros órgãos internacionais. E essa escolha também faz sentido: COVI de coronarus, D de doença (ou disease em inglês) e 19 do ano de 2019, ano em que o primeiro caso de COVID-19 foi identificado.

Mas antes de nos debruçarmos sobre a origem do SARS-CoV-2, como sugere o título desse post, vale lembrar que vírus são partículas compostas majoritariamente por dois tipos de moléculas: ácidos nucleicos (DNA ou RNA) e proteínas. Alguns vírus possuem também um envelope de lipídios, como no caso do coronavírus (Figura 1).

Figura_1
Figura 1 – Ultra-estrutura do SARS-CoV-2. Os coronavírus são vírus de RNA cujo envelope lipídico possui numerosos “espinhos” (do inglês spikes), dando a impressão de uma “coroa” quando vistos sob microscópio eletrônico (veja também a imagem de abertura desse post). Daí vem o nome desse grupo de vírus, os coronavírus. Fonte: Imagem modificada de Alissa Eckert, Dan Higgins; Jan 2020 (Center for Disease Control, CDC).

Vírus são agente infecciosos, causadores de milhares de doenças em animais, plantas, fungos e bactérias. Conhecemos hoje mais de 200 mil tipos diferentes de vírus, e o número de novas espécies virais continua a crescer significativamente todo ano. Os vírus são considerados parasitas intracelulares obrigatórios, pois apesar de inertes quando fora de células vivas, um único vírus é capaz de cooptar o metabolismo celular para a produção de milhares de novas partículas virais em poucas horas. Nos últimos meses, cientistas têm estudado intensamente o SARS-CoV-2, não apenas para entender sua origem como também em busca de um caminho para o desenvolvimento de uma vacina ou de um tratamento eficaz, e desde o início do ano centenas de artigos já foram publicados. Assim, já conhecemos o suficiente do SARS-CoV-2 para afirmar com convicção que, até o momento, não existe qualquer evidência sugerindo que o SARS-CoV-2 é fruto de manipulação humana intencional. Na realidade, os dados apontam para um processo evolutivo por seleção natural, resultando na transferência zoonótica do SARS-CoV-2 para humanos a partir de um hospedeiro animal. Assim, no restante desse post, buscarei apresentar as evidências que temos, até o momento, de que o SARS-CoV-2 surgiu por transferência zoonótica, assim como contextualizar a transferência zoonótica em relação ao surgimento de outros vírus capazes de infectar humanos.

Que evidências temos, até o momento, de que o SARS-CoV-2 surgiu por transferência zoonótica? O coronavírus causador da pandemia que atravessamos hoje, o SARS-CoV-2, é um entre pelos menos seis outros coronavírus que infectam humanos. Apesar de muitos coronavírus, como 229E, NL63, HKU1 e OC43, causarem apenas sintomas leves, dois outros coronavírus são responsáveis por doenças respiratórias graves em humanos, o SARS-CoV e o MERSCoV. O SARS-CoV foi o agente responsável pela pandemia da Síndrome Respiratória Aguda Grave (SARS) de 2003, que acometeu dezenas de países e resultou na morte de mais de 700 pessoas. Já o MERSCoV é o responsável pela Síndrome Respiratória do Oriente Médio (MERS), inicialmente identificada em 2012. Segundo a Organização Mundial de Saúde, até Novembro de 2019 foram diagnosticados mais de 2.400 casos de MERS, resultando em mais de 800 mortes.

Nessa última semana, um artigo publicado na revista Nature comparou uma parte importante do genoma do SARS-Cov-2 ao de outros coronavírus de humanos e de outros hospedeiros animais, com ênfase na sequência de aminoácidos da proteína do espinho proteico (Figura 1). O espinho proteico do coronavírus está intimamente relacionado à capacidade do vírus de penetrar células humanas, e tem sido alvo importante no desenvolvimento de vacinas contra o SARS-CoV-2.  A sequência de aminoácidos do espinho proteico de SARS-CoV-2 de humanos é semelhante às sequências encontradas em coronavírus de morcegos e pangolins (Figura 2), sugerindo fortemente a transmissão zoonótica do vírus. Visto que a sequência em humanos difere, mesmo que minimamente, da sequência dos vírus nessas outras linhagens, ainda não sabemos ao certo a partir de qual hospedeiro animal o SARS-CoV-2 se originou.

Figura_2
Figura 2 – Estrutura do genoma viral com foco especial no gene relacionado ao espinho proteico. Duas regiões do espinho proteico do SARS-CoV-2, destacadas na figura acima, ressaltam a semelhança entre a sequência de aminoácidos da proteína do vírus em humanos (seta vermelha) e em morcegos e pangolins (setas azuis). Ainda, a região chamada de “domínio de ligação ao receptor” (do inglês receptor-binding domain), parte da estrutura proteica do espinho, liga-se ao receptor ACE2 na superfície de células humanas e facilita a infecção das células pelo vírus [Fonte: Modificado de Andersen et al. 2020. Nature].
Além disso, a região do espinho chamada de “domínio de ligação ao receptor” (Figura 2, “Receptor-binding domain”) é a parte do espinho responsável pela ligação do vírus ao receptor ACE2 presente na superfície de células humanas. É a ligação da proteína viral ao receptor ACE2 que permite que ele invada células humanas. Curiosamente, a sequência de aminoácidos do SARS-CoV-2 humano, quando comparado àquela de morcegos e pangolins, apresenta modificações que aumentam a afinidade dessa proteína ao receptor ACE2, sugerindo claramente que essa região é o resultado da seleção natural dessa proteína, tornando-a bastante eficaz na infecção de humanos.  Apesar de termos técnicas capazes de produzir em laboratório agentes infecciosos, tais como um novo vírus, não há qualquer evidência, na região analisada na Figura 2, ou no restante do genoma do vírus, que sugira manipulação genética intencional, visto que os produtos dessas técnicas laboratoriais podem ser facilmente identificados. Além disso, seria esperado que, se um novo vírus fosse criado intencionalmente, este seria criado a partir de sequências de outros vírus já sabidamente patogênicos, como o SARS-CoV e o MERSCoV, e não a partir de genes de pangolins ou morcegos, parcamente conhecidos em relação ao seu potencial patogênico em humanos. Assim, o conjunto de evidências que temos hoje aponta para a transferência zoonótica do SARS-CoV-2 para humanos a partir de um hospedeiro animal.

Não há nada de novo nessa ideia: vários outros vírus já largamente conhecidos, tais como o SARS-CoV e o MERSCoV, o HIV, o Ebola e o H1N1, são exemplos de vírus que tiveram origem em outros grupos animais e, como resultado de processos evolutivos, passaram a infectar o homem. E não pára por ai: a transferência zoonótica está também na origem do sarampo, da varíola, da dengue, da zika, da raiva, e de muitas outras doenças virais. Apesar de uma parte significativa das infecções zoonóticas estarem concentradas nos trópicos, a pandemia atual é um exemplo de como transferências zoonóticas, principalmente em um mundo tão interconectado, podem afetar o globo, com grande impacto na saúde pública, na economia, e na vida de todos nós. Vale ressaltar também que a emergência de novas doenças por transferência zoonótica está associada a intensificação da agricultura e a mudanças ambientais, ou seja, a intensificação da agricultura em várias partes do globo e o impacto ambiental gerado pela pressão de urbanização e pelas mudanças climáticas aumenta o risco de emergência de novas doenças por transferência zoonótica.

Certamente, esse não será o ultimo episódio em que teremos que enfrentar um novo vírus que, anteriormente infectando outros organismos, adquire a capacidade de infectar humanos. E volto, assim, à ideia importante que discuti no final do primeiro parágrafo: apenas com investimento sério em ciência poderemos compreender em detalhes a evolução viral tanto em humanos como em hospedeiros não-humanos. Estudando como os diferentes vírus evoluem em seus hospedeiros não-humanos poderemos, quem sabe um dia, antecipar os eventos de transmissão zoonótica, evitando, ou ao menos nos preparando melhor para pandemias como as que vivemos hoje. Investimento em ciência permite, também, entendermos os mecanismos de infecção viral, guiando o desenvolvimento de novas vacinas e novos tratamentos. Investimento em ciência nos ajuda também a entender como as modificações ambientais que impomos ao planeta interferem nos processos evolutivos, porventura facilitando o surgimento de novas doenças, ou reavivando doenças já erradicadas em determinadas regiões do globo. E, em um momento tão difícil quanto o que estamos vivendo, precisamos, cada um de nós, fazer a nossa parte e levar a sério o isolamento social. Estamos todos juntos no combate a COVID-19 e, quanto mais cedo seguirmos as recomendações dos cientistas, mais vidas serão salvas.

 

Ana Almeida

(Cal State University East Bay, CSUEB)

 

Para saber mais:

Ellwagner, J.E. & Chies, J.A.B. 2018. Zoonotic spillover and emerging viral diseases –time to intensify zoonoses surveillance in Brazil. The Brazillian Journal of Infeccious Disease, 22(1): 76-78.

Holmes, E.C. 2011. What does virus evolution tell us about virus origins? Journal of Virology, 85(11): 5247-5251.

Stated Clearly. 2020. Coronavirus disease (COVID-19). Youtube.

Tesini, B.L. 2020. Coronavírus e síndromes respiratórias agudas (COVID-19, MERS, e SARS). Ministério da Saúde.

World Health Organization. 2020. Coronavirus disease (COVID-19) pandemic. Último acesso em 22/03/2020.

 

Imagem de abertura: Micrografia eletrônica de partículas virais do SARS-CoV-2, causador da pandemia COVID-19 que vivemos hoje, emergindo de células cultivadas em laboratório, coletadas de um paciente nos EUA. Fonte: NIAID-RML, Wikipedia.

As Mães da Genética

Seja no ensino médio ou em um curso superior, uma de nossas primeiras aulas de Genética começa com a história de Gregor Mendel, o pai da Genética. Todos sabemos da história do monge e seu jardim de ervilhas com sementes verdes ou amarelas, lisas ou rugosas. Sabemos que suas descobertas sobre a herança foram publicadas em 1866 no trabalho “Experimentos em hibridização de plantas”, mas que ele só foi reconhecido anos depois com a redescoberta de seus trabalhos por Hugo De Vries, Carl Correns e Erich von Tschermak. Foi por meio de uma citação em uma nota de rodapé no trabalho de Hugo De Vries que William Bateson tomou conhecimento dos experimentos de Mendel. Bateson ficara tão impressionado com o brilhante trabalho de Mendel, que a passou a atuar como seu apóstolo, traduzindo seus trabalhos do alemão para o inglês e levando a palavra de Mendel a todos os eventos científicos. Bateson criou a disciplina Genética em 1905, inventou seu nome e estabeleceu a terminologia a ser usada pelos geneticistas (fenótipo, genótipo, homozigoto, heterozigoto, alelomorfo, P, F1, F2, F3). O próximo passo foi criar uma conexão emocional das pessoas com a nova disciplina e aí entrou Gregor Mendel. Mendel era o herói que a Genética precisava, o gênio que não foi reconhecido no seu tempo, o Pai da Genética. Para mostrar que o pai da Genética estava, de fato, certo sobre a herança das características, Bateson precisava de mais exemplos, vindos de características de variados organismos que fossem capazes de mostrar a universalidade das Leis de Mendel. A partir de então a Genética deixa de ser uma disciplina órfã de mãe.      

Dirigindo a “escola” de Genética que ele mesmo criou em Cambridge, Bateson recrutou especialistas em Botânica, Zoologia e Fisiologia associadas ao Newnham College, Cambridge, para obter assistência crítica no avanço de seu programa de pesquisa sobre as recém-enunciadas Leis de Mendel. Dos 13 pesquisadores intimamente envolvidos na pesquisa de hereditariedade em Cambridge, sete eram mulheres associadas com o Newnham College. Havia poucas oportunidades para que as mulheres de Cambridge participassem de pesquisas de pós-graduação. A disposição de Bateson de aceitá-las em seu programa de pesquisa, portanto, proporcionou uma oportunidade notável para as mulheres em biologia. Entre 1902 e 1910, as mulheres de Cambridge realizaram uma série de cruzamentos em várias espécies de plantas e animais, cujos resultados foram cruciais para apoiar e estender as leis de hereditariedade de Mendel. Elas eram orientadas por Bateson em seus cruzamentos e publicaram artigos como co-autoras. Mas foi Edith Rebecca (Becky) Saunders sua primeira colaboradora independente. 

Edith Rebecca Saunders (1865-1945)

Rebecca Saunders teve uma bolsa de estudos para estudar Ciências Naturais, obtendo o equivalente a um diploma em Fisiologia em 1888. Na época era raro que se permitisse às mulheres a realização de seus exames de conclusão. Mesmo quando conseguiam, elas ainda não recebiam um diploma, mas um condescendente “Certificado de Conclusão”. Após a conclusão de seus estudos, ela passou a trabalhar em pesquisa no Laboratório de Biologia Balfour para Mulheres. Em 1899, Saunders tornou-se diretora do Balfour, cargo que ocupou até o laboratório fechar em 1914. Era extremamente raro para uma mulher ter sua posição acadêmica independente e suas próprias verbas para pesquisa.

ttt2
Figura 1. Edith Rebecca (Becky) Saunders em seu canteiro no jardim. Becky Saunders contribuiu para a descoberta de novos padrões de herança. Reproduzido de Richmond (2006).

Com um extenso conhecimento de botânica e uma sólida experiência em pesquisa, Saunders provou ser uma excelente colega de Bateson. O primeiro projeto de pesquisa conjunta de Saunders e Bateson foi feito em 1895, quando ela plantou linhagens de Biscutella laevigata com folhas glabras ou pubescentes (lisas ou “com pelos”), e depois as cruzou no ano seguinte. Em vez de ver plantas com um nível intermediário de pilosidade, Saunders só viu plantas peludas ou lisas – um exemplo perfeito de variação descontínua, Mendeliana. Obteve resultados que desviavam das proporções Mendelianas nos cruzamentos de outras plantas e animais, como a proporção das cores das flores e a proporção das quatro formas de crista de galinhas. Saunders descreveu a combinação de dois fatores independentes para a expressão de uma característica, explicando assim novas proporções de fenótipos na progênie como o 9:3:3:1 e 9:7. 

O evolucionista JBS Haldane sentiu-se particularmente desconfortável com a omissão da contribuição de Saunders para a Genética, que ele considerou de extrema importância, na história e nos livros. Em um obituário publicado em 29 de setembro, Haldane acrescentou seu próprio tributo a ela no qual afirmou: “É claro que ela e Bateson descobriram independentemente algumas das leis de Mendel antes que seu trabalho lhes fosse conhecido. Na verdade, ela deve ser considerada a “mãe” da genética vegetal britânica”.

Juntamente com seu trabalho de pesquisa feito com Bateson, Saunders estava ocupada ensinando o crescente número de mulheres estudantes de ciências que vinham para Cambridge. Outro nome importante que se juntou a eles foi Muriel Wheldale.

Muriel Wheldale Onslow (1880 –1932)

Muriel Wheldale ingressou no Newnham College no outono de 1900. Ela cursou Ciências Naturais e se especializou em Botânica. Assim como Saunders, Wheldale não pôde receber o seu diploma.  Cambridge passou a conceder o diplomas para mulheres apenas a partir 1948. Wheldale assitiu o curso de Bateson sobre variação e hereditariedade e se interessou pelos fenômenos Mendelianos. Após a  conclusão de seus estudos, ela recebeu a Bolsa de Pesquisa Bathurst de Newnham, criada para permitir que estudantes de ciências promissores realizassem pesquisas de Pós-graduação. Ela iniciou seu trabalho sobre a de hereditariedade de cores de flores na erva-bezerra, Antirrhinum sp. sob a supervisão de Saunders e Bateson. Este trabalho não apenas resultou em uma série de publicações sobre a genética da coloração das plantas, mas também levou Wheldale a se aprofundar em um estudo bioquímico de pigmentos e, eventualmente, uma carreira acadêmica em Cambridge.

ttt3
Figura 2. Muriel Wheldale Onslow. Wheldale contribuiu nas décadas de 1920 e 1930 para hipótese de que genes estavam relacionados a enzimas e outros fatores que conferiam capacidades biossintéticas ou bioquímicas específicas. Reproduzido de Freedman (2012).

Em 1907, Wheldale publicou sua análise da base genética da manifestação das cores: quatro fatores Mendelianos eram combinados para dar origem às diferentes cores das flores. Esse estudo notável foi o primeiro de uma de série de pesquisas sobre a ligação entre a herança de fatores genéticos e a produção dos pigmentos, as antocianinas. Sobre este trabalho, Bateson comentou: “O problema da herança de cores em Antirrhinum, que ela [Wheldale] decidiu resolver, provou ser muito mais complexo do que o esperado, e a solução que ela propôs é inteiramente seu próprio trabalho. Há todas as razões para acreditar que isso está correto e considero o artigo de considerável valor.”

Seu trabalho estabeleceu as bases para que Beadle e Tatum realizassem experimentos em Drosophila melanogaster e Neurospora crassa, quer viriam a ser definitivos para estabelecer a hipótese “um gene-uma enzima”. A descoberta do papel funcional dos genes e do padrão de codificação dessa informação por Joshua Lederberg, desencadearam uma busca incessante pelos genes instrumentais, ou “genes para” determinadas características. De fato, a hipótese simples –um gene, uma enzima (ou polipeptídeo)– permitiu a formulação de testes de hipótese sobre a função gênica e o código genético trazia uma previsibilidade sobre a consequência funcional de mudanças na sequência nucleotídica. Por seu trabalho, Beadle e Tatum compartilharam com Lederberg, o Prêmio Nobel de 1958 em Fisiologia ou Medicina. Beadle a cita no seu discurso de aceitação

Marcella O’Grady Boveri (1863-1950)

Mesmo com os inúmeros exemplos dos cruzamentos feitos por Bateson, seus colaboradores e suas colaboradoras, ainda havia uma grande resistência à Genética Mendeliana. Grande parte da resistência vinha do grupo de biometristas que tinha Karl Pearson e Walter Frank Raphael Weldon como seus principais interlocutores contra as leis Mendelianas. Os biometristas tinham vários argumentos contra o modelo de herança defendido por Bateson, particularmente a dificuldade de conciliar a visão mendeliana com a Seleção Natural de caracteres de distribuição contínua de Darwin. Outra crítica era a natureza não conhecida dos tais fatores Mendelianos (o que eram? onde estavam?). A essa crítica, Walter Sutton, estudante de Doutorado na Universidade de Columbia, propôs a uma hipótese. Ele estudava cromossomos de gafanhotos e, provavelmente após assistir a uma das palestras de Bateson, associou o comportamento dos fatores Mendelianos e o comportamento dos cromossomos. Tanta similaridade o levou a concluir que os fatores estavam nos cromossomos (ou alguma outra estrutura com os mesmos comportamentos).

Ao mesmo tempo, outro grupo na Universidade de Würzburg na Alemanha estudava a função dos cromossomos. Theodor Boveri chegava à conclusão de que o número de pares de cromossomos era uma característica da espécie. Em seu trabalho com ouriços-do-mar, usou alguns truques para criar embriões com número de cromossomos não característico da espécie. Esses embriões eram inviáveis, mostrando que cada cromossomo possuía “qualidades differentes”. As duas abordagens de Sutton e de Boveri se complementavam para a formulação da teoria cromossômica de herança de Sutton-Boveri. Aqui cabe uma correção histórica: Boveri não deveria estar no singular, pois foi o resultado do trabalho conjunto de Theodor e Marcella Boveri. 

Marcella Imelda O’Grady foi a primeira mulher graduada em Biologia no MIT (1885). Lá, O’Grady teve como mentores dois recém-doutores da Universidade Johns Hopkins, William T Sedgwick e Edmund Beecher Wilson. Ela ensinou ciências na Bryn Mawr School para meninas em Baltimore de 1885 a 1887 e foi agraciada com a “Fellowship in Biology” entre 1887-1889 para conduzir estudos avançados no Bryn Mawr College, um feito raro para uma mulher na época. O’Grady foi promovida em 1893 ao cargo de professora titular.

ttt4
Figura 3. Marcella O’Grady Boveri. As circunstâncias nas quais Marcella Boveri realizou sua pesquisa na Alemanha, a levaram a um papel de colaboração e não independência. Ela nunca teve reconhecimento formal pela contribuição no linha de pesquisa já estabelecida pelo marido, Theodor Boveri. Ela acreditava que oportunidade de participar já era em si um privilégio. Reproduzido de  Wright (1997).

Em 1896, O’Grady planejou um ano sabático na Universidade de Würzburg. O trabalho de Theodor Boveri com cromossomos a havia atraído. Ela foi admitida para estudar ciências na Universidade de Würzburg, e mais uma vez foi a primeira mulher aceita no programa de ciências da universidade. No início, Boveri se opunha à idéia de mulheres receberem educação superior e também à ideia de uma mulher trabalhando com ele em sua pesquisa. Não somente a opinião de Theodor Boveri mudou, mas também os planos de Marcella O’Grady: o que deveria ser um sabático tornou-se definitivo com casamento dos dois em outubro de 1897. Ela permaneceu na Alemanha mesmo após a morte de Theodor Boveri em 1915 e retornou aos Estados Unidos em 1927 para assumir a direção do Departamento de Ciências em Albertus Magnus College. 

Embora Marcella Boveri tenha trabalhado tanto quanto o marido em todos os experimentos e tenha sido, de todas as formas, uma contribuinte igual e merecedora de suas descobertas, ela nunca foi oficialmente creditada por nenhum de seus trabalhos, incluindo sua contribuição mais famosa e importante, a teoria da cromossômica da herança de Sutton-Boveri. 

Está agora em nossas mãos reconhecer a contribuição dessas incríveis mulheres para o nosso entendimento da Genética. Falemos sobre elas em nossos cursos básicos de Genética. Lembremos delas dentre as várias cientistas mulheres que têm suas contribuições esquecidas. Que sejam reconhecidas como as mães da Genética, ao lado dos já reconhecidos pais da disciplina, Mendel e Bateson.

Tatiana Teixeira Torres (USP)

 

Para saber mais:

  • Robin Marantz Henig (2001) O Monge no Jardim: o Gênio Esquecido e Redescoberto de Gregor Mendel, o pai da Genética. Ed. Rocco. 256 pp.

Biografia de Gregor Mendel, conta toda sua vida com ênfase em sua descoberta dos padrões de herança de características. Conta também os acontecimentos que levaram a redescoberta de seus trabalhos após 1900 e como a disciplina Genética é criada a partir de suas descobertas.

Este ensaio mostra como a situação da mulher na ciência no início do século XX, em particular, no estabelecimento da nova disciplina da genética. Além do desenvolvimentos científico, o ensaio mostra também fatores institucionais, sociais e políticos importantes na época.

Somos uma espécie domesticada?

Um estudo genético recente sugere que os humanos foram auto-domesticados nos últimos 600 mil anos, após sua separação de neandertais e denisovanos.

Há mais de dois séculos, o zoólogo e anatomista alemão Johann Friedrich Blumenbach mencionou em seu livro “On the Natural Variety of Mankind” (1795) que o ser humano seria “a mais perfeita de todas as espécies domesticadas”. Para o autor, a “domesticação” seria resultado dos diferentes climas, dietas e estilos de vida que teríamos estado sujeitos ao longo do tempo, e que nos levariam a mudanças morfológicas. Charles Darwin escreveu dois volumes sobre “A Variação de Animais e Plantas Domesticados” (1868), no qual em um trecho salienta: ”o homem em muitos aspectos pode ser comparado a estes animais que foram domesticados”. Em muitos aspectos, mas evidentemente não em todos, e não no principal deles, dado que nossa espécie nunca teve seu acasalamento controlado em larga escala para seleção de certas características. No entanto, isso não impede que ainda assim algumas características tenham sido selecionadas não intencionalmente, e provavelmente algumas delas estejam ligados ao processo de domesticação.

Darwin observou que a domesticação levava a uma série de fenótipos herdados em conjunto aos quais chamou de Síndrome da Domesticação. Neste contexto, as espécies domesticadas tendem a diferir de seus ancestrais de maneiras bem específicas, como foi tratado em um post anterior. Uma característica importante dos animais domesticados é que eles suportam a presença de humanos e tendem a suportar a presença de outros de suas espécies. Os humanos são extremamente sociáveis, ao contrário de seus parentes simiescos, que tendem a não tolerar bandos rivais na natureza. Humanos também são menos agressivos que seus ancestrais e mais cooperativos, além de mais graciosos na sua aparência. Mas seríamos nós domesticados?

Em 2017, um estudo tentou estabelecer as primeiras bases genéticas de uma possível auto domesticação em humanos. Os autores compararam genomas de humanos modernos e antigos, e de várias espécies domesticadas e seus correspondentes selvagens, a fim de procurar genes associados às características de domesticação, como docilidade e fenótipo gracioso. Os resultados mostraram um número de variantes gênicas associadas à domesticação que se sobrepuseram entre animais domésticos e humanos. Tais resultados apontam para um provável processo de domesticação não intencional em humanos, extremamente importante no processo de socialização ao longo de nossa evolução, e que teria usado as mesmas rotas genéticas que a seleção artificial em animais domesticados.

Recentemente, em outro estudo, pesquisadores identificaram uma rede gênica envolvida na trajetória evolutiva da face humana e da pró-socialidade, que está ausente no genoma neandertal. O experimento é baseado nas células de pacientes com Síndrome de Williams, que apresentavam diferentes mutações no gene BAZ1B. A Síndrome de Williams é um distúrbio associado a deficiências cognitivas, crânios menores e extrema simpatia. Analisando as linhagens celulares, os pesquisadores descobriram centenas de genes sensíveis ao BAZ1B que influenciam o formato da face em humanos. Ao comparar esses genes em humanos modernos, dois neandertais e um denisovano, eles então constataram que os humanos apresentam muitas mutações nas regiões regulatórias. Isso sugere que essas regiões poderiam estar sob seleção natural. E como muitos desses mesmos genes também foram selecionados em outros animais domesticados, pode-se inferir que os humanos modernos também podem ter passado por um processo de domesticação recente, mas nesse caso auto-domesticação.

Esses estudos abrem novas perspectivas para as afirmações feitam por Blumenbach e Darwin há mais de um século e constroem uma nova abordagem para as questões levantadas por diferentes linhas de pesquisas que tentam entender a evolução da sociabilidade humana.

Tábita Hünemeier

IB/USP

 

PARA SABER MAIS:

Sánchez-Villagra MR and van Schaik CP (2019) Evaluating the self-domestication hypothesis of human evolution. Evol Anthropol. 28(3):133-143.

https://www.ncbi.nlm.nih.gov/pubmed/30938920

Imagem: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0185306

Ecologia da resistência

A resistência a antibióticos é um problema global que vem se acentuando a cada ano. Como a compreensão sobre a ecologia dos mecanismos de resistência pode nos auxiliar no combate a este problema?

Há um tempo postei aqui no Darwinianas um texto que ilustrou alguns experimentos que “flagraram” a evolução em tempo real. Em um destes experimentos foi utilizada um gradiente de concentração de antibióticos (menos antibióticos nas bordas das placas e mais no centro) para verificar se as bactérias se adaptariam a essas crescentes quantidades de antibióticos ao longo do tempo. Foi observado que sim e vimos que, através de eventos raros de mutação, as bactérias podem adquirir resistência a esses compostos tóxicos. Resumindo, vimos que os antibióticos são importantes agentes para a evolução, mas qual será a importância ecológica deles em comunidades naturais de microrganismos? Como esse conhecimento pode ser útil para solução de um dos grandes problemas de saúde que acometem a humanidade e pode se intensificar em um futuro próximo? No post de hoje exploraremos um pouco mais esse tópico.

Os antibióticos são substâncias produzidas naturalmente por microrganismos, bactérias e fungos na maioria das vezes. O primeiro antibiótico a ser descoberto foi a ampicilina. Alexander Fleming, em 1928, ao retornar de suas férias notou que placas de culturas de estafilococos (bactérias do gênero Staphylococcus), esquecidas por ele na bancada, estavam contaminadas por um fungo (Penicillium chrysogenum). Nessas placas, ele notou uma “zona” próxima aos fungos onde as bactérias não cresciam. Essas zonas são hoje chamadas de halos de inibição em testes chamados antibiogramas (Figura 1).

pedro2.png
Figura 1: Teste de susceptibilidade indicando a ação mais forte ou mais fraca, proporcionalmente ao tamanho do halo circundante aos discos de difusão, que são pedacinhos de papel embebidos com diferentes antibióticos ou com diferentes concentrações de um determinado tipo de antibiótico (Fonte da fotografia: https://kasvi.com.br/superbacterias-testes-de-sensibilidade/).

Os antibióticos podem agir matando diretamente microrganismos ou fazendo com que o crescimento de suas populações pare e com o tempo eles morram (ou, em casos de infecção, o sistema imune consiga erradicar as células infecciosas). Existem vários mecanismos moleculares relacionados com a ação dos antibióticos. Cada classe de antibiótico tem um mecanismo específico. Você pode estar se perguntando: “mas… e por que os fungos (ou as bactérias) que os produzem também não morrem?”. As células que produzem este “veneno” devem ser capazes de se proteger dele. Esses mecanismos de resistência são variados e as informações necessárias para produzi-los estão contidas no DNA, razão pela qual chamamos os genes em questão de Genes de Resistência a Antimicrobianos (GRA). Em ambiente natural os antibióticos são utilizados como armas na “guerra” pela sobrevivência e por recursos (alimentos e espaço) e é uma vantagem adaptativa muito grande ter a capacidade de produzi-los e/ou de proteger-se deles no mundo dos microrganismos. Apesar de ocorrerem naturalmente e a muitos sua origem ser muito antiga (ver abaixo), conhecemos os genes de resistência (ou bactérias resistentes, ou super-resistentes), pois tem sido um crescente problema de saúde mundial.

A resistência a antibióticos é tida como uma das maiores ameaças globais à saúde, à segurança dos alimentos e ao desenvolvimento pela Organização Mundial de Saúde. Estima-se que 700 mil pessoas morram por ano decorrentes de infecções graves por bactérias resistentes a antibióticos. Além desse fato alarmante, é importante mencionar que doenças como pneumonia, tuberculose e gonorreia estão se tornando cada vez mais difíceis de tratar. Isso faz com que o tempo de internação, os custos e a mortalidade decorrente dessas infecções aumentem. A uma altura dessas você deve estar preocupado, se perguntando o que pode estar causando este aumento e como podemos evitar casos como esses, certo? Uma das mais importantes causas do aumento crescente de bactérias super-resistentes (bactérias que têm resistência a múltiplos antibióticos), é o mal-uso ou abuso de antibióticos. Isso acontece porque as bactérias podem adquirir os genes de resistência de outras bactérias e os antibióticos, caso sejam administrados incorreta e excessivamente, a seleção natural agirá sobre as populações e manterá as bactérias que contêm arsenais de defesa contra os antibióticos. A resistência se propaga nas populações humanas e nos ambientes. Outras fontes importantes de genes de resistência a antibióticos são criatórios intensivos de animais que administram doses altas dessas drogas, selecionando microrganismos resistentes nos próprios animais, nos solos e na água destes locais.

Para entender melhor como estes genes estão distribuídos no ambiente e se podemos identificar uma fonte mais provável desses genes, diversos pesquisadores têm estudado as comunidades microbianas de ambientes naturais e ambientes com alta pressão humana. Os estudos apontam que locais onde há fortes pressões antrópicas, como, por exemplo, esgotos domésticos, hospitalares ou resíduos de indústrias farmacêuticas, têm maior abundância e diversidade de genes de resistência. Como visto acima, a seleção natural age eliminando os microrganismos que não podem se proteger dos antibióticos e selecionando os que podem, fazendo com que os mesmos sejam mais abundantes. Muitos desses estudos utilizam abordagens metagenômicas, ou seja, o sequenciamento do DNA ambiental (ver esse post aqui onde expliquei resumidamente o que é metagenômica). Alguns estudos apontam que os mecanismos de resistência são extremamente antigos e surgiram há aproximadamente 2 bilhões de anos. Mesmo sendo mais abundantes em ambientes sob maior pressão antrópica, os genes de resistência a antibióticos foram encontrados em ambientes tidos como pristinos, por exemplo, em solos da Antártica e do Alasca, em cavernas isoladas e em solos permafrost (que são solos congelados no hemisfério norte, para saber mais, ver esse post aqui) de mais de 30 mil anos de idade. É importante chamar a atenção de que a presença desses genes de resistência a antibióticos nos ambientes naturais é uma questão se sobrevivência e adaptação dos microrganismos. Não devemos temer isso. O perigo para o ser humano e outros animais é quando esses mecanismos de resistência são “movidos” (em termos genéticos, isso ocorre literalmente) para patógenos. Isso acontece, pois as bactérias tem a capacidade de poder “aproveitar” diretamente o DNA disponível no ambiente, oriundo de células mortas, ou podem trocar pedaços do seu DNA diretamente com outras células. No primeiro caso chamamos esse processo de transformação, no segundo de conjugação. Além disso as bactérias podem ser infectadas por vírus, que são chamados de bacteriófagos, esses muitas vezes carregam pedaços de DNA que contem genes de resistência. O processo pelo qual um microrganismo recebe um fragmento de DNA de outra célula, de um vírus ou do ambiente é chamado de transferência horizontal de genes. Este mecanismo é muito importante para a evolução e ecologia das bactérias.

O entendimento de que as comunidades microbianas naturais podem ser uma fonte diversa para os mecanismos de resistência a antibióticos pode ser uma saída para este grave problema que acomete a humanidade. A partir do próprio ambiente podemos encontrar soluções para esses problemas. Entender que a resistência a antibióticos está num contexto de Saúde Única (em inglês One Health, que engloba aspectos humanos, de animais e ambientes) e deve ser enfrentado de uma maneira holística, é uma grande oportunidade para a descoberta de novas drogas e tratamentos alternativos.

 

Pedro Milet Meirelles

Laboratório de Bioinformática e Ecologia Microbiana

Instituto de Biologia da UFBA

meirelleslab.org

 

Para Saber mais:

Pal, C., Bengtsson-Palme, J., Kristiansson, E. and Larsson, D.J., 2016. The structure and diversity of human, animal and environmental resistomes. Microbiome4(1), p.54.

Van Goethem, M.W., Pierneef, R., Bezuidt, O.K., Van De Peer, Y., Cowan, D.A. and Makhalanyane, T.P., 2018. A reservoir of ‘historical’antibiotic resistance genes in remote pristine Antarctic soils. Microbiome6(1), p.40.

Surette, M.D. and Wright, G.D., 2017. Lessons from the environmental antibiotic resistome. Annual review of microbiology71, pp.309-329.

As plantas e os seus mil e um transcriptomas

Cientistas publicam o resultado do sequenciamento de mais de 1.000 transcriptomas de plantas de diferentes linhagens evolutivas. Mas e daí?

Nessa última semana, a revista Nature publicou o resultado de um esforço multinacional de sequenciamento do  transcriptoma de 1.124  espécies de algas e plantas terrestres. Essa iniciativa é parte do projeto 1000 Plant Genomes, também conhecido como 1KP, um amplo projeto dedicado à compreensão da história evolutiva das plantas. Esse artigo é, sem dúvida, o estudo sobre evolução das plantas (ou do grupo tecnicamente chamado de Viridiplantae) mais amplo já realizado, tanto em termos de amostragem quanto em termos da quantidade de dados analisada.

Mas, o que aprendemos com essa quantidade gigantesca de dados?

Nesse artigo, os cientistas do 1KP revisam as principais relações evolutivas entre algas e plantas terrestres, entre os principais grupos de gimnospermas, assim como sua relação com as angiospermas, e as relações evolutivas entre as principais linhagens de plantas com flores, a partir da comparação de mais de 400 genes extraídos dos milhares de transcriptomas analisados. Um resumo das relações entre as principais linhagens evolutivas está apresentado na Figura 1 abaixo.

ana.png
Figura 1 – As principais relações evolutivas entre as diversas linhagens de plantas, baseadas na análise de 410 genes extraídos dos vários transcriptomas analisados pelo 1KP. Em vermelho, o grupo das plantas com flores, o grupo de maior diversidade de espécies de plantas. As relações que já haviam sido anteriormente propostas ganharam mais robustez a partir do grande conjunto de dados analisados. (Fonte: Modificada da Fig. 2 da publicação do 1KP).

Curiosamente, e a despeito da quantidade gigantesca de dados analisados, os cientistas foram cautelosos ao apresentar os resultados das análises filogenéticas, pois em muitos dos casos as várias abordagens apresentaram resultados conflitantes, particularmente em relação a divergências entre genes nucleares e dos cloroplastos.

De maneira geral, muitas das relações apresentadas na Figura 1 – assim como muitas das suas incertezas – já eram anteriormente conhecidas pela comunidade científica. Por exemplo, uma das principais questões na evolução das plantas diz respeito à linhagem de algas mais proximamente relacionada às plantas terrestres. Dois cenários despontam como igualmente possíveis no presente estudo: (i) as plantas terrestres são mais relacionadas às algas Zygnematophyceae; ou (ii) as plantas terrestres são igualmente relacionadas às algas Zygnematophyceae e Coleochaetales. Ambas as linhagens, juntamente com outras linhagens de algas e plantas terrestres, compõem o grupo das Streptophyta. Desde pelo menos 2012 essas relações já haviam sido postuladas.

Um outro exemplo refere-se à relação entre as linhagens de briófitas (os musgos, hepáticas e antóceros), assim como à relação entre elas e a plantas vasculares, que não foram completamente resolvidas pelo estudo. Enquanto os genes de cloroplastos sugeriram que as linhagens de briófitas são mais relacionadas entre si e igualmente relacionadas às plantas vasculares, a análise de todos os dados em conjunto – incluindo genes nucleares – sugeriu que os musgos e as hepáticas são mais relacionados às plantas vasculares do que aos antóceros.

Os cientistas do 1KP foram capazes também de identificar 244 eventos de duplicação de genoma completo (do inglês whole genome duplication, WGD), 65 dos quais já haviam sido anteriormente identificados em projetos específicos de sequenciamento de genomas (Figura 2). Desses eventos de duplicação de genoma completo, o estudo identificou pelo menos um evento em cada uma das linhagens de plantas terrestres estudadas. Dentre as plantas terrestres, as samambaias apresentaram a maior frequência de duplicações de genoma, condizente com os elevados números de cromossomos encontrados nessas espécies de plantas. Ainda, diversos eventos de duplicação de genoma completo foram identificados nas linhagens de plantas com flores.  Em contraste ao observado nas plantas terrestres, a maioria das linhagens de algas estudadas não apresentou evidência de duplicações de genoma completo. Curiosamente, as Zygnematophyceae, um dos grupos de algas mais proximamente relacionado às plantas terrestres, exibiu a maior densidade de duplicações de genoma completo, dentre todas as linhagens de algas estudadas.

ana2.png
Figura 2 – Estimativa do número de duplicações de genomas completos ao longo da evolução das plantas. Em vermelho, à esquerda, os eventos de duplicação de genoma completo na árvore filogenética dos principais grupos de plantas. À direita, o número médio de duplicações de genoma completo nas linhagens analisadas. (Fonte: Modificada da Fig. 4 da publicação do 1KP).

Apesar de duplicações de genoma completo serem eventos frequentes na evolução das plantas terrestres, as implicações desse fenômeno para a diversificação das linhagens de plantas ainda são desconhecidas. Os cientistas do 1KP foram cuidadosos em esclarecer que não foi observada uma correlação clara entre os eventos de duplicação de genoma completo e um aumento imediato no número de espécies pós-duplicação. Não sabemos também se há, de fato, uma correlação entre eventos de duplicação completa de genoma e o surgimento de características supostamente adaptativas nas diversas linhagens de plantas. Há mais de 20 anos, eventos de duplicações de genoma completo foram postulados como importantes processos envolvidos na origem de novidades evolutivas em diversas linhagens de plantas. A lógica por trás dessa ideia baseia-se no fato de que esses eventos são capazes de gerar um excedente de material genético, relativamente disponível e capaz de, através do acúmulo de mutações, originar novos genes ou novas famílias gênicas, resultando assim no surgimento de novas características. Um exemplo de tal correlação ocorre, por exemplo, na origem evolutiva das plantas com flores. Cientistas consideram que os dois eventos de duplicação de genoma completo que precederam a evolução das plantas com flores foram cruciais para o surgimento de novos genes envolvidos na regulação e no desenvolvimento de características específicas desse grupo.

Mas seriam essas descobertas novas?

O advento de novas tecnologias de sequenciamento de DNA tem proporcionado um avanço significativo nas descobertas das bases genéticas de diversos processos biológicos. Tem permitido também a geração de uma tremenda quantidade de dados que, muitas vezes, sem um arcabouço teórico claro, acabam por não servir a um propósito muito claro no desenvolvimento do conhecimento científico.  O 1KP é, na verdade, um guarda-chuva para diversos subprojetos, espalhados em laboratórios de todo o mundo, cada qual com interesses particulares em diferentes linhagens de plantas. Esses subprojetos já realizaram importantes contribuições para o entendimento de vários aspectos da evolução das plantas, como, por exemplo, o entendimento da comunicação entre cloroplasto e núcleo, da evolução de vias metabólicas de variados compostos secundários, da origem e evolução dos mecanismos de resposta à auxina (um dos principais hormônios em plantas), dentre outras contribuições. A lista de publicações associadas aos subprojetos do 1KP pode ser encontrada aqui. Mas, a publicação da análise dos mais de mil transcriptomas das plantas em si pouco trouxe de novidade para a comunidade científica. Talvez o maior benefício desse esforço esteja na disponibilização gratuita desses. Com perguntas mais focadas, assim como aquelas realizadas no âmbito dos subprojetos, cientistas possivelmente serão capazes de estudar as implicações dos eventos duplicações de genoma completo, tão prevalentes na história evolutiva das plantas terrestres e ainda tão misteriosos.

Curiosamente, pensar nos mais de mil transcriptomas do 1KP me remeteu aos famosos contos árabes “As Mil e Uma Noites”, talvez pelo fato de ambos tratarem de uma quantidade semelhante de coisas: enquanto os contos árabes narraram eventos de mil e uma noites entre o rei Xariar e sua esposa Xerazade, o 1KP sequenciou “mil e tantos” transcriptomas das mais variadas espécies de plantas.  “As Mil e Uma Noites” é o título dado a um conjunto de histórias de várias origens, incluindo o folclore árabe, persa e indiano.  Não há uma versão definitiva da obra, pois diferentes edições divergem no número e conjunto de contos incluídos. No entanto, o eixo principal de todas as versões está organizado em torno das diversas histórias narradas, mas nunca concluídas, por Xerazade, esposa do rei Xariar, no intuito de escapar à sua quase inevitável execução.

De forma semelhante, o 1KP é constituído por um conjunto de subprojetos, cada qual contando uma história particular da evolução de um determinado grupo de plantas. Porém, no caso de “As Mil e Uma Noites”, os contos isoladamente têm, talvez, menor importância do que o conjunto da obra: cada conto é parte de uma longa história, cujo resultado final permite que Xerazade, após mil e uma noites, escape do seu destino fatal. Já no caso do 1KP, o valor parece estar nas contribuições isoladas de cada subprojeto, mais do que no conjunto da obra, pois essa não trouxe nada de muito novo, mas sobretudo deu mais suporte ao que já sabíamos anteriormente. Talvez falte ao 1KP um fio condutor, tal qual o de “As Mil e Uma Noites”, capaz de gerar interesse suficiente para manter-se vivo a longo prazo e resolver de fato as principais questões da história evolutiva das plantas.

Ana Almeida

California State University East Bay (CSUEB)

 

Para saber mais:

Carpenter E.J. et al. 2019. Access to RNA-sequencing data from 1,173 plant species: The 1000 Plant transcriptomes initiative (1KP). GigaScience 8: giz126.

Morris, J.L. et al. The timescale of early plant evolution. 2018. PNAS, 115: E2274-E2283.

Ruhfel, B.R. et al. 2014. From algae to angiosperms–inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evolutionary Biology, 14: 23.

Soltis, P.S.; Folk, R.A.; Soltis, D.E. 2019. Darwin Review: angiosperm phylogeny and evolutionary radiations. Proc. R. Soc. B, 286: 0190099.

Soltis, P.S. et al. 2015. Polyploidy and genome evolution in plants. Current Opinion in Genetics & Development, 35: 119-125.

 

Ser gay é genético?

Existe um “gene gay”? Ou seriam vários genes? Um estudo recente analisou os genomas de centenas de milhares de pessoas em busca dessas respostas.

Recentemente um laboratório passou a oferecer testes de predição genética com a seguinte chamada “How gay are you?”. O produto está sendo proposto no esteio de um grande estudo publicado em uma revista de prestígio acadêmico, que analisou dados de centenas de milhares de pessoas buscando elucidar as bases genéticas da orientação sexual. Continue Lendo “Ser gay é genético?”