Uma nova luz sobre o papel da serotonina na herança

Cientistas descobrem que a serotonina está diretamente envolvida em mudanças epigenéticas no DNA, abrindo novos caminhos para o entendimento da relação entre DNA, o comportamento humano, e transtornos psiquiátricos.

Uma das coisas mais fascinantes, para mim, é pensar que dentro da maioria das nossas células, precisamente dentro do núcleo das nossas células diploides, possuímos aproximadamente 2 metros de DNA. Se considerarmos que o corpo humano possui uma média de 50 trilhões de células, cada um(a) de nós carrega diariamente algo em torno de 100 trilhões de metros de DNA, o equivalente a 300 vezes a distância entre a Terra e o Sol, ou a 2,5 milhões de voltas ao redor do globo! Ainda mais interessante é pensar que, em mamíferos, o tamanho do núcleo varia entre 11 e 22µm (um µm é um milionésimo do metro). Como é possível colocarmos tanto DNA dentro de estruturas tão pequenas como o núcleo celular?

A principal estratégia que evoluiu em nossas células para compactar os 2 metros de DNA dentro do núcleo é enrolá-lo em proteínas, e as principais proteínas utilizadas por células nucleadas, tais como as nossas, são as histonas. Pares de histonas H2A, H2B, H3 e H4 se unem para formar o cerne da estrutura primária de compactação do nosso DNA, o nucleossoma (Figura 1). O DNA dá aproximadamente duas voltas em torno desse conjunto de histonas, e cada núcleo possui centenas de milhares de nucleossomas. Essa é apenas a primeira etapa de compactação do DNA dentro do núcleo celular. Veja aqui mais detalhes a respeito de outras estratégias que evoluíram em nossas células para compactar o DNA.

ana2.png
Figura 1 – Estrutura do nucleossoma. Histonas H2A, H2B, H3 e H4 compõe o centro do nucleossomo, ao redor do qual o DNA dá duas voltas. [Fonte: Modificado de Richard Wheeler (Zephyris) – English Wikipedia, CC BY-SA 3.0].
Mas as histonas não estão apenas no cerne dos nossos nucleossomas. Desde o início da década de 1950, a íntima relação das histonas com o DNA sugeriu um papel importante  dessas proteínas na modificação de certas propriedades do DNA. Quatorze anos mais tarde, Allfrey e colaboradores sugeriram pela primeira vez que modificações químicas das histonas, como acetilação e metilação, eram possíveis mecanismos pelos quais essas proteínas influenciavam propriedades do DNA, facilitando ou interferindo no acesso ao DNA pela maquinaria celular. Hoje sabemos que essas proteínas são importantes componentes dos mecanismos envolvidos no que chamamos de herança epigenética. Herança epigenética é qualquer herança que não envolve mudanças na sequência de nucleotídeos do DNA, e sim na forma como o organismo utiliza a informação genética ali presente. Na herança epigenética herdamos padrões de expressão gênica. Isso explica, por exemplo, como a partir do mesmo DNA presente em todas as nossas células, produzimos os mais de 200 tipos celulares distintos que compõem o nosso corpo.

Hoje conhecemos diversos mecanismos de herança epigenética, dentre os quais a modificação das histonas é um dos principais. Nas últimas décadas, começamos a entender o papel desses mecanismos na saúde e na doença. Por exemplo, hoje sabemos que a desregulação epigenética é uma característica comum em vários tipos de câncer, e a possibilidade de modificar os padrões de herança epigenética abre novas oportunidades de tratamento. Sabemos também que alterações epigenéticas estão ligadas ao envelhecimento, a doenças neurodegenerativas e a diabetes, dentre outras doenças.

Um aspecto bastante curioso dos mecanismos de herança epigenética é que eles sofrem influência dos hábitos de vida do organismo. Ou seja, a epigenética provê uma ligação entre os estímulos ambientais aos quais estamos expostos no nosso dia-a-dia e alterações nos padrões de expressão gênica. Um exemplo interessante dessa ligação é a relação entre dieta e longevidade. Hoje acreditamos que a epigenética pode explicar a relação entre o que comemos e o quanto vivemos. Ainda mais curioso é saber que essas alterações epigenéticas podem ser herdadas, mesmo após a remoção do estímulo inicial. Por exemplo, estudos em camundongos sugerem que o condicionamento ao medo, aprendido pelos pais, é herdado na geração seguinte, e a herança desse comportamento aprendido é mediada por modificações nas histonas.

Conhecemos hoje um número significativo de modificações químicas das histonas que influenciam os padrões de expressão gênica, dentre as quais as principais ainda são a metilação e a acetilação. Mas essa semana diversos pesquisadores revelaram uma nova classe de modificações: a serotonilação de histonas, ou seja, a ligação direta entre a serotonina e as histonas. A serotonina é uma molécula fundamental para o funcionamento do sistema nervoso e participa de diversos processos como inibição de comportamentos agressivos, regulação do sono e do apetite. Por muito tempo, a ideia de que a desregulação dos níveis de serotonina estava diretamente ligada a transtornos psiquiátricos, como depressão e ansiedade, foi amplamente aceita pela comunidade médica. No entanto, a relação entre serotonina, depressão e ansiedade não está ainda completamente esclarecida, embora seja inegável que o uso de inibidores seletivos de recaptação de serotonina foi um grande avanço no tratamento desses transtornos. A descoberta de que a serotonina está diretamente envolvida em modificações epigenéticas que resultam em mudanças na utilização do DNA pelas nossas células pode ser a peça que faltava para esse enigma.

A participação da serotonina em mecanismos de herança epigenética não é um fato novo. Já sabemos, por exemplo, que a serotonina é capaz de ativar cascatas de sinalização, mediante ativação do receptor de serotonina, que resultam na remodelação da cromatina, um dos principais mecanismos de herança epigenética (Figura 2a). Serotonilação de proteínas também não é, por si só, um fenômeno novo. Já sabíamos que a serotonina é capaz de se ligar a outras proteínas celulares, alterando o seu funcionamento. Mas essa é a primeira vez que temos evidência de que a serotonina se liga diretamente a histonas, modificando a interação dessas proteínas com o DNA e influenciando os padrões de expressão gênica (Figura 2b). Essa interação ocorre mediante o trânsito de serotonina para o núcleo celular, onde se liga diretamente a histonas (seta, Figura 2b).

ana3.png
Figura 2 – Papel da serotonina nos mecanismos epigenéticos de (a) remodelação da cromatina e (b) serotonilação de histonas. [Fonte: Modificado de Cervantes & Sassone-Corsi, Nature 2019.
O padrão específico de serotonilação de histonas estudado pelos pesquisadores é observado, de maneira mais significativa, no cérebro e no intestino, dois dos principais órgãos de produção de serotonina no corpo. Os experimentos realizados sugerem também que a serotonilação de histonas leva a um aumento da expressão gênica nas regiões serotoniladas do DNA e que células com histonas mutantes, incapazes de sofrer serotonilação, apresentam padrões distintos de expressão gênica, que resultam em anormalidades na diferenciação celular.

Sem dúvida, ainda temos muito o que aprender a respeito dos mecanismos de herança epigenética e as implicações dessa herança para os processos de saúde e doença. A descoberta da serotonilação de histonas é apenas um exemplo do quanto ainda temos a pesquisar, e quão pouco ainda sabemos sobre a relação entre o nosso comportamento, nossas emoções e modificações epigenéticas.

Como nossas dietas e modos de vida influenciam essa forma de “marcar” o DNA? Como o nosso humor pode influenciar essas “marcações” e como isso pode influenciar o comportamento dos nossos filhos? Qual o papel da serotonilação de histonas nas doenças psiquiátricas? Teremos, agora, uma nova via de tratamento desses transtornos? Que outros efeitos a serotonilação de histonas possui no nosso metabolismo?  Enquanto não temos respostas a todas essas perguntas, sejamos prudentes: tenhamos menos medo e sejamos mais felizes. Talvez assim possamos influenciar positivamente (e epigeneticamente) as futuras gerações!

Ana Almeida

(California State University East Bay)

 

Para saber mais:

Carhart-Harris RL, Nutt DJ. 2017. Serotonin and brain function: a tale of two receptors. J. of Phychopharmacology, 31(9): 1091-1120.

Lacal I, Ventura R. 2018. Epigenetic Inheritance: Concepts, Mechanisms, and Perspectives. Frontiers in Molecular Neuroscience, doi: 10.3389/fnmol.2018.00292.

Lind MI, Spagopoulou F. 2018. Evolutionary consequences of epigenetic inheritance. Heredity, 121: 205-209.

Romanowska J, Joshi A. 2019. From Genotype to Phenotype: Through Chromatin. Genes, 10(2): 76.

Imagem de abertura: AndreaAP96. Wikipedia, CC-BY-SA-4.0.

Os testes de ancestralidade genética diminuem o racismo?

Os testes de ancestralidade têm se tornado cada dia mais acessíveis. A possibilidade de ter nossas origens determinadas cientificamente parece ter um valor social que ultrapassa barreiras culturais.

Nos últimos anos se tornaram virais os vídeos do projeto Momondo, realizado em parceria com a Ancestry.com. O primeiro vídeo do projeto reuniu um grupo de pessoas de diferentes nacionalidades que expressavam orgulho de sua identidade nacional ou étnica, e admitiam possuir preconceitos contra outras nacionalidades. Os vídeos, então, mostraram as reações emotivas desses indivíduos ao descobrir que seu DNA trazia uma combinação de várias nacionalidades das quais eles alegavam não gostar. De modo similar, um vídeo da companhia Mexicana de Aviación oferecia descontos a cidadãos estadunidenses na mesma proporção de sua ancestralidade latina. Muitos deles antes de receberem seu resultado nunca haviam considerado ir ao México, e eram extremamente preconceituosos em relação ao país.

Os vídeos acima são destinados a públicos distintos, e têm agendas políticas muito diferentes. O primeiro é uma mensagem clara pós-Brexit contra uma crescente extrema direita europeia, cada vez mais intolerante e xenofóbica dentro de suas próprias fronteiras. Nesse contexto, ele leva os espectadores a se perguntarem o que significaria para um inglês com uma antipatia afirmada em relação aos alemães descobrir que ele mesmo é geneticamente “25% alemão”. A intolerância aqui combatida não é racial no sentido amplo, mas sim nacionalista. O segundo vídeo mostra estadunidenses loiros de olhos claros com nenhum interesse no país vizinho sendo surpreendidos por terem raízes naquele lugar tão desprezado, e para muitos até digno de uma barreira física de separação. Aqui a mensagem é direta: o que está em seu DNA não é evidente aos olhos, e o muro pode estar dentro de você. Estes são apenas dois exemplos do que pode ser um resultado social positivo dos testes de ancestralidade, pois parece levar à percepção de que todos nós, em alguma escala temporal, somos miscigenados. No entanto, tanto em teoria quanto na prática, existem algumas implicações dos testes de ancestralidade que devem ser consideradas com atenção.

A primeira implicação é relacionada à natureza do próprio teste, que é classificatória e qualitativa, lembrando muito as classificações raciais. O que então mudou? E por que ao mesmo tempo em que a grande maioria dos geneticistas luta diariamente para tentar abolir o uso do conceito de raça na espécie humana, ao menos em termos biológicos, os testes de ancestralidade surgem e ganham força, classificando os indivíduos em europeus, asiáticos, africanos, e nativos americanos? A resposta é simples, mas dificilmente vem descrita nos vídeos ou nas páginas dedicadas aos testes de ancestralidade: a maior parte da variação genética é encontrada dentro dos grupos continentais (africanos, europeus, asiáticos, e nativos americanos), o que é a base teórica usada para desacreditar as bases genéticas por trás do uso de raça (mais detalhes aqui). Existe uma ínfima variação genética que difere os indivíduos dentro de nossa espécie, em torno de 0.1%. As diferenças encontradas entre as populações humanas são nas frequências de alguns marcadores genéticos, e para a realização dos testes de ancestralidade, são usados marcadores selecionados para intensificar essa diferenciação. Ou seja, eu, por exemplo, 100% europeia, assim sou identificada quando estes marcadores escolhidos são comparados com os mesmos de um africano ou asiático; caso qualquer outra parte dos nossos genomas fosse comparada, nenhum de nós poderia ter sua ancestralidade definida com segurança. Vale ressaltar que os genes de pigmentação (que definem cor de pele, olhos e cabelos) estão dentro dessa pequena variação, o que faz muitas vezes essa diferença ser bastante perceptível, embora tenha uma base genética pequena.

A segunda implicação é social. Esquecemos, ao repetir que os testes de ancestralidade podem diminuir o preconceito pois mostrarão que em algum grau somos todos miscigenadas, que a maior parte da população mundial não seria miscigenada ao fazer um teste de ancestralidade, e sim que provavelmente seria 100% asiática (temos mais de 1 bilhão de chineses  e 1 bilhão de indianos no mundo), 100% europeia, ou 100% africana. Neste contexto, os testes de ancestralidade podem levar a uma afirmação dos movimentos de supremacia branca, e assim seriam um instrumento preciso e eficiente de opressão. Existe também, claro, com o refinamento dos testes, a possibilidade de se aferir grupos quase nacionais, o que poderia a levar a nacionalismos exacerbados em algumas partes do mundo.

Pessoalmente, como geneticista, já fui abordada em duas situações, uma por telefone e outra por e-mail, por indivíduos pertencentes a movimentos ligados à supremacia branca no Brasil. Um deles queria usar seu teste de DNA para “provar” que era “europeu puro” em um processo judicial que estava sofrendo por injúria racial. Na sua percepção de mundo, o fato de ser “puro” lhe dava o “direito” de chamar o outro de “híbrido”, em suas palavras. No segundo caso, tratava-se de um cidadão que havia realizado o teste do 23andMe, e seus resultados haviam sugerido ancestralidade 100% europeia, sendo 80% italiana. Com base nisto, ele gostaria de acelerar seu pedido de cidadania, com o argumento de “pureza”. Nenhum país concede cidadania com base em testes de ancestralidade.

Por outro lado, existe um aspecto relativo aos resultados de ancestralidade que é fascinante e engrandecedor. Em sociedades como a nossa, na qual a escravidão persistiu por quatro séculos, trazendo compulsoriamente 4 milhões de africanos para nosso país, sem documentos de entrada e com os poucos registros queimados após a abolição, com o objetivo de apagar esta mácula de nossa história, os testes de ancestralidade são a única maneira de devolver aos afro-brasileiros um pouco da sua história. Com o refinamento étnico-geográfico dos testes atuais , é possível aferir a origem em nível muito detalhado, resgatando o passado queimado pelo governo.

A genética evolutiva humana pode ser uma ferramenta eficiente para a diminuição do racismo de nossa sociedade, mas o caminho provavelmente não será por meio de uma popularização dos testes de ancestralidade, e sim pelo ensino de evolução e diversificação humana. A diminuição do racismo se dará como uma consequência natural do entendimento da história do Homo sapiens, desde seu surgimento na África, diversificação, e migração para os demais continentes. Europeus, asiáticos e nativos americanos nada mais são do que um pequeno ramo da população africana que deixou o continente africano muito recentemente para habitar novos ecossistemas.

Tábita Hünemeier

IB/USP

 

PARA SABER MAIS:

Alondra Nelson (2016) The Social Life of DNA: Race, Reparations, and Reconciliation After the Genome. Beacon Press.

Adam Rutherford (2016) A Brief History of Everyone Who Ever Lived: The Stories in Our Genes. Weidenfeld & Nicolson.

Fonte da imagem

A herança além do DNA

Cientistas descobrem um sistema inusitado de herança epigenética: vermes nematóides que vivem na genitália de rola-bostas são transmitidos para a prole do besouro e influenciam positivamente seu desenvolvimento.

A evolução biológica é classicamente pensada na perspectiva da transmissão de características dos pais à prole por meio da informação genética contida na molécula de DNA. Tal processo se baseia na genética mendeliana clássica, de acordo com a qual a transmissão de alelos (as versões de um gene) ocorre livre de influências externas, como, por exemplo, os fatores ambientais. No entanto, pesquisas mais recentes em biologia evolutiva têm mostrado a existência de uma gama de mecanismos não-genéticos de transmissão, como a herança epigenética, as atividades hormonais e a interação dos organismos com seus simbiontes.

Os simbiontes são seres vivos de determinada espécie que fazem parte do ambiente em que os organismos de uma outra espécie (seus hospedeiros) vivem e se desenvolvem. Os simbiontes interagem com seus hospedeiros e os influenciam de uma forma que pode ser benéfica, neutra ou prejudicial. Para insetos, essa interação é particularmente importante, uma vez que microrganismos podem desempenhar funções fisiológicas essenciais, como a síntese de nutrientes, digestão de componentes vegetais, dentre outras. Dessa forma, os simbiontes podem influenciar diretamente o fitness do hospedeiro. O termo fitness se refere ao valor adaptativo de um fenótipo ou genótipo, refletindo assim o sucesso de um indivíduo em passar suas características à próxima geração. Como os simbiontes podem ser transmitidos de forma vertical (ou seja, de geração para geração), representam uma forma de herança não-genética cujo papel na evolução dos hospedeiros pode ser fundamental.

Pesquisadores da Universidade de Indiana descobriram uma relação simbionte-hospedeiro bastante inusitada. Foi descoberto um simbionte nematóide, Diplogastrellus monhysteroides, que vive nas genitálias de besouros Ontophagus taurus, os famosos rola-bosta, que já foram personagens de um dos textos mais populares do Darwinianas. A transmissão deste simbionte ocorre de duas formas. A primeira forma é a sexual, na qual besouros de um sexo transmitem o simbionte para o outro sexo durante a cópula, de forma análoga a uma doença sexualmente transmissível (DST). A segunda é a transferência vertical, na qual o simbionte é transferido da mãe para a prole. As fêmeas do rola-bosta constroem câmaras onde depositam bolas de esterco que serão importantes para o desenvolvimento de sua prole. Os simbiontes são transferidos para esta câmara através das bolas de esterco contaminadas onde apresentarão interação com as larvas dos besouros.

ssssss.png
Figura 1. Presença de nematóide (seta vermelha) na genitália (seta verde) do besouro rola-bosta (modificado de Ledón-Rettig e colaboradores).

Para avaliar o papel dos simbiontes no desenvolvimento dos hospedeiros, os pesquisadores manipularam as câmaras de esterco de forma que um grupo de besouros se desenvolveu na presença do nematóide e outro na ausência. Foi mostrado que a presença do nematóide afeta o desenvolvimento das larvas do besouro favorecendo seu crescimento: larvas que se desenvolveram na presença do simbionte cresceram mais até o período da formação da pupa. Essa taxa de crescimento mais elevada é interpretada pelos pesquisadores como vantajosa em termos adaptativos.

Em um segundo momento, os pesquisadores procuraram compreender como exatamente os simbiontes favorecem o crescimento dos hospedeiros. Para isso, levantaram a hipótese de que o aumento de fitness conferido ao besouro se dá por alterações induzidas pelo nematóide nas populações dos micro-organismos que habitam o ambiente de desenvolvimento. Para testar essa hipótese, eles quantificaram a abundância de fungos e bactérias nos dois tratamentos (com e sem a presença do nematóide) e mostraram que as proporções de diversos destes grupos eram alteradas pela presença do nematóide. Um exemplo de uma dessas alterações foi o aumento da abundância de bactérias que degradam biomassa vegetal, o que pode ter afetado positivamente o ambiente nutricional dos besouros em desenvolvimento.

aaaa.png
Figura 2. Nematódeos do gênero Diplogastrellus (foto de Erik Ragsdale).

Esse estudo rompe com a ideia tão difundida de que nematóides são simbiontes meramente comensais (neutros) ou mesmo prejudiciais aos seus hospedeiros. Ao contrário, os experimentos mostraram pela primeira vez que nematóides também podem ser engenheiros ecológicos de ambientes de desenvolvimento que oferecem grandes vantagens aos seus hospedeiros. Até então, a maioria dos trabalhos que avaliaram o papel dos simbiontes no desenvolvimento do hospedeiro explorou microrganismos unicelulares. O trabalho dos pesquisadores da Universidade de Indiana mostra que organismos de tamanho médio (no caso, os nematóides) também podem estar envolvidos em processos de herança não-genética que afetam o fitness dos organismos através de mudanças no ambiente de desenvolvimento. Resta agora compreender como exatamente os nematóides afetam as populações de micro-organismos desse ambiente, o que em última instância poderá ter relevância até para questões de saúde humana.

Bruno C. Genevcius (USP – Instituto de Biociências)

Para saber mais:

Almenara, D. P., de Camargo Neves, M. R., Kamitani, F. L., & Winter, C. E. (2018). Nematóides entomopatogênicos: as duas faces de uma simbiose. Revista da Biologia, 6(2), 1-6.

Uma entrevista com Cristina Ledón-Rettig, principal autora do artigo aqui discutido, explicando sua descoberta.

Five things dung beetles do with a piece of poo.

Nutritional Symbionts: Why Some Insects Don’t Have to Eat Their Vegetables

De pai para filhos

Cientistas descrevem um fenômeno raro em humanos: a herança de mitocôndrias da linhagem paterna. Esse fenômeno pode ter inúmeras consequências para a medicina e para o nosso entendimento da evolução humana.

Mitocôndrias são importantes organelas encontradas em praticamente todas as células eucarióticas. Veja aqui um post do Darwinianas que discute uma exceção. Considerada em muitos livros didáticos como a “usina” da célula, é na mitocôndria que se dá a maior parte da produção de energia, resultante em larga escala dos processos de respiração celular.  A explicação mais amplamente aceita a respeito da origem e evolução das mitocôndrias, apresentada pela Teoria da Endossimbiose, é a de que essas organelas, assim como os cloroplastos, tiveram origem de bactérias simbiontes. Mitocôndrias são fascinantes: elas possuem DNA próprio muito semelhante ao DNA das bactérias, são capazes de se duplicar e possuem metabolismo largamente independente do metabolismo celular, principalmente no que se refere à produção de proteínas. E isso tudo acontece continuamente dentro de cada uma das nossas células!

O número de mitocôndrias em uma célula eucariótica varia enormemente e é dependente de vários fatores como o tipo de tecido, estágio do ciclo celular, fases do desenvolvimento, ou resposta a estresse. Em média, uma célula eucariótica pode possuir centenas ou até milhares de mitocôndrias. Em humanos, uma célula hepática pode ter até duas mil mitocôndrias, representando 1/5 do volume celular. Na grande maioria dos casos, todas as mitocôndrias de uma mesma célula possuem cópias idênticas, ou quase idênticas, do mesmo DNA mitocondrial, herdado inicialmente da mitocôndria materna, fenômeno chamado de homoplasmia. Em última análise, todos nós estamos evolutivamente conectados, por meio da linhagem materna de DNA mitocondrial que remonta aos primórdios da humanidade, ideia sintetizada na expressão Eva Mitocondrial. Com base nessa ideia, o genoma mitocondrial tem sido amplamente utilizado para compreendermos a origem e evolução humana, assim como os padrões de migração das populações ao longo dos tempos.

Em mamíferos, com raras exceções, a herança de mitocôndrias se dá a partir da linhagem materna. Ou seja, assim como ocorre em cães e gatos, herdamos mitocôndrias das nossas mães. Mas, essa não é a regra em outros grupos. Herança mitocondrial bi-parental acontece em cogumelos e leveduras, enquanto herança paternal acontece em plantas. Evolutivamente, no entanto, a herança bi-parental de mitocôndrias, que resulta em um fenômeno chamado de heteroplasmia, no qual populações distintas de mitocôndrias coexistem na mesma célula, parece não ser vantajosa. Apesar de não termos ainda uma boa explicação para esse fenômeno, estudos em camundongos sugerem que heteroplasmia leva a um possível conflito entre mitocôndrias distintas em uma mesma célula, particularmente em relação à eficiência na produção de energia. Em camundongos, heteroplasmia resulta em comprometimentos fisiológicos, cognitivos e comportamentais, o que pode, ao menos em parte, explicar a prevalência da herança uni-parental em mamíferos.

Durante a fertilização em mamíferos, mitocôndrias presentes no espermatozoide paterno penetram o óvulo materno. No entanto, o DNA mitocondrial paterno, ou em alguns casos as próprias mitocôndrias paternas, é rapidamente degradado. Em animais, diversos mecanismos de degradação já foram descritos. Em mamíferos, a degradação das mitocôndrias paternas depende do correto funcionamento de lisossomos ou de proteassomas, ambos altamente dependentes do DNA nuclear. Dessa forma, mutações em genes nucleares podem resultar em  casos de heteroplasmia.

No entanto, na grande maioria dos casos até hoje descritos, heteroplasmia em humanos resulta não da herança de mitocôndrias paternas, mas de mutações pontuais no DNA mitocondrial da linhagem materna, fenômeno conhecido como ‘maldição materna’ (do inglês “mother’s curse”). Assim como em camundongos, heteroplasmia em humanos está fortemente associada a doenças mitocondriais, nas quais o funcionamento da mitocôndria está comprometido. A maioria dessas doenças resulta em comprometimento fisiológico severo, ou até mesmo inviabilidade do embrião, e mulheres com altas taxas de mutações no DNA mitocondrial têm alta probabilidade de aborto ou de terem filhos com essas doenças.

Doenças mitocondriais são um grande desafio para a medicina. Diversos tipos de terapia de substituição ou transferência de mitocôndria vêm sendo desenvolvidos, mas os avanços dessas abordagens são ainda bastante recentes. O primeiro caso de sucesso de terapia de substituição de mitocôndrias foi descrito em 2016, no qual um bebê foi gerado a partir da contribuição tri-parental.

Esta semana, um estudo publicado na PNAS  apresentou dados intrigantes que podem levar a uma nova compreensão da heteroplasmia em humanos. Luo e colaboradores descreveram, a partir de dados de sequenciamento do DNA mitocondrial completo, casos de herança mitocondrial bi-parental em 17 indivíduos de três famílias não-aparentadas. Até hoje, sabíamos apenas de um outro caso de herança paterna de mitocôndrias em humanos, descrito em apenas um indivíduo. Este é, portanto, o primeiro estudo de herança bi-parental conduzido em famílias. O que é ainda mais surpreendente é que alguns desses indivíduos que apresentam herança bi-parental não apresentam qualquer sintoma, contrariando a ideia de que heteroplasmia é necessariamente disfuncional em humanos.

Os autores propõem que a herança bi-parental descrita nessas famílias é resultante de mutações no DNA nuclear desse indivíduos, interferindo na eliminação da mitocôndria paterna. No entanto, a busca pelos fatores genéticos que contribuem para heteroplasmia resultante de herança bi-parental ainda continua, pois os mecanismos envolvidos nesse processo ainda não foram completamente desvendados.  É curioso notar também que, na grande parte dos casos estudados até hoje, o sequenciamento do DNA mitocondrial é motivado por situações nas quais os indivíduos são afetados por doenças mitocondriais. Portanto, sabemos ainda muito pouco a respeito do DNA mitocondrial de pessoas normais. Sem dúvida, necessitamos de mais estudos para compreendermos a prevalência desse fenômeno na população e a sua relação com as doenças mitocondriais.

Entender os mecanismos que levam à heteroplasmia em humanos pode nos auxiliar no desenvolvimento de tratamentos que eliminem por completo a necessidade de terapia de transferência ou reposição mitocondrial, por exemplo. O estudo de casos de indivíduos heteroplásticos normais pode levar a um novo entendimento das relações entre o DNA mitocondrial e nuclear, assim como da interação entre mitocôndrias distintas em uma mesma célula. Mas, além das diversas possibilidades de aplicação desse conhecimento na cura de doenças mitocondriais, esse estudo pode ter implicações talvez ainda mais profundas. Se a heteroplasmia em humanos for mais prevalente do que inicialmente estimado, talvez precisemos revisar, ao menos em parte, a história evolutiva da nossa própria espécie, que baseia-se largamente no pressuposto da herança mitocondrial materna exclusiva.

Os resultados apresentados por Luo e colaboradores desafiam duas ideias largamente aceitas na comunidade cientifica: a maldição materna e a Eva mitocondrial. E para a ciência, o desafio de ideias historicamente estabelecidas é um momento de grande entusiasmo. Estudos futuros podem  resultar na necessidade de reinterpretação de ideias há muito consolidadas, abrindo novas vias de pesquisa e desenvolvimento até então não exploradas. Essas transformações podem resultar em uma mudança paradigmática do conhecimento científico vigente, o que Thomas Kuhn chamou de ‘revolução científica’. E, no caso da herança mitocondrial, essa revolução ‘vem de dentro’, de dentro de cada uma das nossas células.

Ana Almeida

California State University East Bay (CSUEB)

 

Para saber mais:

Barr, C.M.; Neiman, M.; Taylor, D.R. 2005. Inheritance and recombination of mitochondrial genomes in plants, fungi, and animals. The New Phytologist, 168(1): 39-50.

Bromham, L. et al. 2003. Mitochondrial Steve: paternal inheritance of mitochondria in humans. Trends in Ecology and Evolution, 18(1): 2-4.

Connallon, T. et al. 2017. Coadaptation of mitochondrial and nuclear genes, and the cost of mother’s curse. Proceedings of the Royal Society B, 285: 20172257.

Herst, P.M. et al. 2017. Functional mitochondria in health and disease. Frontiers in Endocrinology, 8(296): 1-16.

Tuppen, H.A.L, et al. 2010. Mitochondrial DNA mutations and human disease. Biochimica et Biophysica Acta, 1797: 113–128.

Figura – Eletromicrografia de mitocôndrias no tecido pulmonar de mamífero. Fonte: Wikipedia, Louisa Haward.

Os modelos na jornada conhecimento

O mundo real é extraordinariamente complexo. Cientistas trabalham com simplificações dessa realidade, que nos ajudam a entendê-lo. Essas simplificações são os modelos.

Como cientistas interessados em biologia, tentamos gerar conhecimento sobre o mundo que nos rodeia. Essa tarefa não é trivial: nosso objeto de estudo é incrivelmente complexo, envolvendo interações entre moléculas que residem em células, entre células que compõem tecidos, entre indivíduos que são formados de tecidos, entre populações que são formadas por indivíduos. Cada nível dessa hierarquia envolve uma multidão de agentes interagindo uns com os outros. A transformação evolutiva envolve interações em todos esses níveis. Continue Lendo “Os modelos na jornada conhecimento”

Observando a Evolução em tempo real

Quantas gerações você é capaz de voltar atrás e saber quem eram seus parentes mais antigos? Será que consegue resgatar o nome da tataravó da sua tataravó? A rainha Elizabeth da Inglaterra tem o registro de 32 gerações. O filósofo chinês Confúcio tem o maior registro genealógico humano conhecido, 80 gerações. E se fossemos capazes de voltar mais de 70 mil gerações? Que perguntas poderíamos responder? Continue Lendo “Observando a Evolução em tempo real”

Pistas genômicas sobre a evolução de nossos cérebros plásticos

A aprendizagem e a experiência social moldam profundamente nosso comportamento, cognição, modo de ser. O que estudos genômicos têm mostrado sobre a evolução da plasticidade de nossos cérebros?

São muitos os animais que são capazes de aprender. Mas não encontramos em outros animais a mesma capacidade de responder à experiência e ao ambiente por meio da aprendizagem que vemos em humanos. Nosso comportamento é moldado pela aprendizagem social de uma maneira sem paralelos entre os seres vivos. Que mudanças ocorridas na evolução do cérebro tornaram possível tal capacidade de aprender? No último número de Annual Review of Anthropology, Chet C. Sherwood e Aida Gómez-Robles revisam o que sabemos a este respeito, num artigo sobre plasticidade cerebral e evolução humana. Retomamos aqui algumas de suas ideias. Continue Lendo “Pistas genômicas sobre a evolução de nossos cérebros plásticos”