Quer saber sua origem? Pergunte aos microrganismos e a Loki.

Num post aqui do Darwinianas, João Francisco Botelho falou sobre os microrganismos que habitam o corpo humano e explicou que através do desenvolvimento de técnicas de biologia molecular conseguimos acessar uma grande diversidade antes não conhecida de microrganismos difíceis de cultivar em laboratório. Neste meu primeiro post aqui do Darwinianas vou falar um pouco mais sobre uma dessas abordagens, a metagenômica, com a qual trabalho rotineiramente no meu Laboratório.

O termo “metagenômica” foi cunhado pela pesquisadora Jo Handelsman em 1998 e quer dizer “além do genoma”. A abordagem consiste basicamente em coletar amostras ambientais (por exemplo, de saliva humana a sedimentos de fossas marinhas abissais) e extrair e sequenciar simultaneamente o DNA de todos os microrganismos presentes nesta amostra. Com essas sequências em mãos podemos saber quem são os microrganismos presentes na amostra e o que eles potencialmente estão fazendo, pois podemos saber quais são os genes que estão presentes ali. Para fazer isso, os cientistas tinham que fragmentar o DNA metagenômico, colar em outros pedaços de DNA (por exemplo, plasmídeos) e inserir em bactérias para poder separar (ou isolar) os fragmentos, para depois disso dar significado biológico a essas sequências. Esse procedimento, era muito caro e laborioso, mas com os avanços tecnológicos hoje é possível “ler” uma quantidade extremamente maior de material genético, em muito menos tempo, a um custo muito menor.

Essa revolução tecnológica fez com que os bancos de dados de sequências crescesse muito, o número de genomas de referência (usados para dar significado biológico às sequências) também crescesse e novas abordagens e desafios fossem aparecendo. Com a massiva geração de novos dados, é possível reconstruir genomas inteiros a partir das sequências metagenômicas. A descoberta de alguns novos genomas tem contribuído muito para a expansão do conhecimento da biodiversidade e da e sobre as relações de parentesco entre os organismos. Ressalto aqui dois exemplos.

Em um trabalho liderado pela pesquisadora Jillian Banfield, centenas de novos grupos de bactérias extremamente pequenas e de biologia incomum foram descobertos em aquíferos contaminados por urânio através da reconstrução de novos genomas. Esses novos grupos (filos) representam uma expansão de 15% do da diversidade conhecida de bactérias e têm uma origem evolutiva comum. Esses microrganismos peculiares podem estar desempenhando funções importantes na ciclagem de matéria, por exemplo, de nitrogênio, carbono, enxofre.

Outro trabalho, liderado pelo pesquisador Thijs Ettema, analisou amostras de sedimento próximos a uma fumarola (chamada de “Castelo de Loki”, em homenagem ao deus nórdico de mesmo nome) a 2.383 metros de profundidade no Mar do Norte. A partir das sequências metagenômicas, os pesquisadores conseguiram montar novos genomas de microrganismos pertencentes a um novo filo do Domínio Archaea, Lokiarchaeota, em homenagem ao deus Loki. É muito interessante que estejam presentes nesses genomas recentemente descobertos vários genes considerados exclusivos de eucariotos. Esse novo filo “bagunçou” a árvore da vida, sugerindo que nós, eucariotos, somos fruto da evolução de uma célula arqueana que fagocitou uma bactéria.

Diversos grupos de pesquisa ao redor do globo vêm se dedicando a essas abordagens e milhares de novos genomas de microrganismos e vírus estão sendo recuperados de amostras disponíveis em bases de dados públicas, elucidando importantes questões científicas. Porém, os desafios são grandes. É necessário um grande poder computacional e habilidades de programação para analisar volumes tão grandes de dados em tempo hábil. Só para se ter ideia, o sequenciamento de uma amostra metagenômica pode gerar um arquivo texto (composto apenas por “A”, T”, “C” e “G”, os nucleotídeos que constituem o DNA) de mais de 50 Gigabytes! As novas tecnologias e abordagens estão revolucionando a forma como estudamos a vida de maneira muito rápida, trazendo a possibilidade de fazer novas perguntas e avançar ainda mais na nossa compreensão da natureza, da diversidade da vida e do fazer científico.

Pedro Milet Meirelles 

Instituto de Biologia da UFBA

Figura de Capa: Representação do Deus nórdico Loki, que inspirou a nomeação de um grupo de microrganismos que podem fornecer pistas sobre nossa origem evolutiva (Fonte: https://norse-mythology.org/gods-and-creatures/the-aesir-gods-and-goddesses/loki/).

Para Saber mais:

Anantharaman, K., Brown, C. T., Hug, L. A., Sharon, I., Castelle, C. J., Probst, A. J., et al. (2016). Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat. Commun. 7, 13219. doi:10.1038/ncomms13219. (https://www.nature.com/articles/ncomms13219)

Brown, C. T., Hug, L. A., Thomas, B. C., Sharon, I., Castelle, C. J., Singh, A., et al. (2015). Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 523, 208–211. doi:10.1038/nature14486. (https://www.nature.com/articles/nature14486)

Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J., and Goodman, R. M. (1998). Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5, R245–9. (https://www.cell.com/cell-chemical-biology/pdf/S1074-5521(98)90108-9.pdf)

Parks, D. H., Rinke, C., Chuvochina, M., Chaumeil, P.-A., Woodcroft, B. J., Evans, P. N., et al. (2017). Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 903, 1–10. doi:10.1038/s41564-017-0012-7. (https://www.nature.com/articles/s41564-017-0012-7)

Roux, S., Brum, J. R., Dutilh, B. E., Sunagawa, S., Duhaime, M. B., Loy, A., et al. (2016). Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537, 689–693. doi:10.1038/nature19366. (https://www.nature.com/articles/nature19366)

Spang, A., Saw, J. H., Jørgensen, S. L., Zaremba-Niedzwiedzka, K., Martijn, J., Lind, A. E., et al. (2015). Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179. doi:10.1038/nature14447. (https://www.nature.com/articles/nature14447)

Novos inimigos invisíveis

Cientistas descobrem mais de 200 novas espécies de vírus de RNA em vertebrados, a partir de uma ampla busca por esses vírus em répteis, anfíbios e peixes.

Todos nós que crescemos durante a década de 1980 fomos de alguma forma marcados pelo início da epidemia de AIDS: o desconhecimento, o medo, e o preconceito marcavam então o cenário nacional e internacional. Foi apenas em 1984 que o vírus HIV foi isolado, dando início aos estudos da biologia viral e ao desenvolvimento de terapias antirretrovirais

Continue Lendo “Novos inimigos invisíveis”

Interruptores moleculares e a diversidade das espécies

Ao olhar a diversidade dos organismos, naturalmente nos questionamos sobre a origem da riqueza das formas, dos tamanhos, das funções. Esta, no entanto, não é uma pergunta nova. Charles Darwin, assim como muitos antes dele, fez este mesmo questionamento e propôs que todas as espécies estão relacionadas umas às outras em uma única filogenia. Mas mesmo após seu trabalho, e por grande parte do século 20, pouco se sabia sobre as bases moleculares das diferenças entre as espécies.

François Jacob, um dos cientistas que construíram o primeiro modelo explicativo da regulação da transcrição, disse em uma de suas entrevistas que, quando iniciou sua carreira em biologia, nos anos 1950, a ideia predominante para explicar essas diferenças era de que as moléculas de um organismo eram diferentes das moléculas de outro organismo. Por exemplo, “vacas teriam moléculas de vacas, cabras teriam moléculas de cabras e cobras teriam moléculas de cobras”. 

Continue Lendo “Interruptores moleculares e a diversidade das espécies”

Para genomas, tamanho é documento?

Há 50 anos, pensava-se que a quantidade de DNA em um genoma tinha uma correlação positiva com a complexidade de um organismo, ou seja, quanto mais complexa fosse uma espécie, mais DNA era necessário para armazenar aquelas informações que seriam traduzidas em fenótipos hierarquicamente mais complexos. O que pensamos hoje dessa ideia? Continue Lendo “Para genomas, tamanho é documento?”

A conquista do mundo pelos gatos

A Mesopotâmia foi o berço da nossa civilização e dos primeiros gatos domésticos, mas foi a partir do Antigo Egito que essa espécie começou a conquistar o mundo.

A história do gato doméstico (Felis silvestris catus) desenvolveu-se de maneira paralela à da nossa espécie, mas sem grande interferência humana por um longo tempo. Enquanto os ancestrais dos cães aproximaram-se e foram cooptados por bandos de caçadores-coletores há cerca de 20-40 mil anos, os gatos só passaram a fazer parte de nossa história após  o surgimento da agricultura, há cerca de 10 mil anos. Continue Lendo “A conquista do mundo pelos gatos”

Vida semissintética é uma realidade cada vez mais próxima de nós

Cientistas são capazes de expandir o código genético e criar bactérias semissintéticas

O desejo de criar vida em laboratório a partir de moléculas não-vivas, ou de modificar organismos vivos com um objetivo específico, sempre povoou a mente de muitos de nós. Entre escritores, por exemplo, esse desejo se expressa nas mais mirabolantes histórias de ficção científica, nas quais personagens semi-humanos adquirem novas habilidades através da expansão do corpo por meio de aparatos tecnológicos. 

Continue Lendo “Vida semissintética é uma realidade cada vez mais próxima de nós”

Uma questão de pele

O que explica as grandes diferenças na cor de pele em nossa espécie? Hoje sabemos que mutações em diversos genes contribuem para essa variação. E descobrimos também o que tornou algumas mutações comuns em certas regiões do mundo e raras em outras: a seleção natural.

Há imensa variação na cor de pele de humanos: temos desde pele muito escura até muito clara. E, é claro, uma imensa gama intermediária. Por que? Como é comum em biologia, há diferentes formas de responder à questão. Continue Lendo “Uma questão de pele”