As plantas e os seus mil e um transcriptomas

Cientistas publicam o resultado do sequenciamento de mais de 1.000 transcriptomas de plantas de diferentes linhagens evolutivas. Mas e daí?

Nessa última semana, a revista Nature publicou o resultado de um esforço multinacional de sequenciamento do  transcriptoma de 1.124  espécies de algas e plantas terrestres. Essa iniciativa é parte do projeto 1000 Plant Genomes, também conhecido como 1KP, um amplo projeto dedicado à compreensão da história evolutiva das plantas. Esse artigo é, sem dúvida, o estudo sobre evolução das plantas (ou do grupo tecnicamente chamado de Viridiplantae) mais amplo já realizado, tanto em termos de amostragem quanto em termos da quantidade de dados analisada.

Mas, o que aprendemos com essa quantidade gigantesca de dados?

Nesse artigo, os cientistas do 1KP revisam as principais relações evolutivas entre algas e plantas terrestres, entre os principais grupos de gimnospermas, assim como sua relação com as angiospermas, e as relações evolutivas entre as principais linhagens de plantas com flores, a partir da comparação de mais de 400 genes extraídos dos milhares de transcriptomas analisados. Um resumo das relações entre as principais linhagens evolutivas está apresentado na Figura 1 abaixo.

ana.png
Figura 1 – As principais relações evolutivas entre as diversas linhagens de plantas, baseadas na análise de 410 genes extraídos dos vários transcriptomas analisados pelo 1KP. Em vermelho, o grupo das plantas com flores, o grupo de maior diversidade de espécies de plantas. As relações que já haviam sido anteriormente propostas ganharam mais robustez a partir do grande conjunto de dados analisados. (Fonte: Modificada da Fig. 2 da publicação do 1KP).

Curiosamente, e a despeito da quantidade gigantesca de dados analisados, os cientistas foram cautelosos ao apresentar os resultados das análises filogenéticas, pois em muitos dos casos as várias abordagens apresentaram resultados conflitantes, particularmente em relação a divergências entre genes nucleares e dos cloroplastos.

De maneira geral, muitas das relações apresentadas na Figura 1 – assim como muitas das suas incertezas – já eram anteriormente conhecidas pela comunidade científica. Por exemplo, uma das principais questões na evolução das plantas diz respeito à linhagem de algas mais proximamente relacionada às plantas terrestres. Dois cenários despontam como igualmente possíveis no presente estudo: (i) as plantas terrestres são mais relacionadas às algas Zygnematophyceae; ou (ii) as plantas terrestres são igualmente relacionadas às algas Zygnematophyceae e Coleochaetales. Ambas as linhagens, juntamente com outras linhagens de algas e plantas terrestres, compõem o grupo das Streptophyta. Desde pelo menos 2012 essas relações já haviam sido postuladas.

Um outro exemplo refere-se à relação entre as linhagens de briófitas (os musgos, hepáticas e antóceros), assim como à relação entre elas e a plantas vasculares, que não foram completamente resolvidas pelo estudo. Enquanto os genes de cloroplastos sugeriram que as linhagens de briófitas são mais relacionadas entre si e igualmente relacionadas às plantas vasculares, a análise de todos os dados em conjunto – incluindo genes nucleares – sugeriu que os musgos e as hepáticas são mais relacionados às plantas vasculares do que aos antóceros.

Os cientistas do 1KP foram capazes também de identificar 244 eventos de duplicação de genoma completo (do inglês whole genome duplication, WGD), 65 dos quais já haviam sido anteriormente identificados em projetos específicos de sequenciamento de genomas (Figura 2). Desses eventos de duplicação de genoma completo, o estudo identificou pelo menos um evento em cada uma das linhagens de plantas terrestres estudadas. Dentre as plantas terrestres, as samambaias apresentaram a maior frequência de duplicações de genoma, condizente com os elevados números de cromossomos encontrados nessas espécies de plantas. Ainda, diversos eventos de duplicação de genoma completo foram identificados nas linhagens de plantas com flores.  Em contraste ao observado nas plantas terrestres, a maioria das linhagens de algas estudadas não apresentou evidência de duplicações de genoma completo. Curiosamente, as Zygnematophyceae, um dos grupos de algas mais proximamente relacionado às plantas terrestres, exibiu a maior densidade de duplicações de genoma completo, dentre todas as linhagens de algas estudadas.

ana2.png
Figura 2 – Estimativa do número de duplicações de genomas completos ao longo da evolução das plantas. Em vermelho, à esquerda, os eventos de duplicação de genoma completo na árvore filogenética dos principais grupos de plantas. À direita, o número médio de duplicações de genoma completo nas linhagens analisadas. (Fonte: Modificada da Fig. 4 da publicação do 1KP).

Apesar de duplicações de genoma completo serem eventos frequentes na evolução das plantas terrestres, as implicações desse fenômeno para a diversificação das linhagens de plantas ainda são desconhecidas. Os cientistas do 1KP foram cuidadosos em esclarecer que não foi observada uma correlação clara entre os eventos de duplicação de genoma completo e um aumento imediato no número de espécies pós-duplicação. Não sabemos também se há, de fato, uma correlação entre eventos de duplicação completa de genoma e o surgimento de características supostamente adaptativas nas diversas linhagens de plantas. Há mais de 20 anos, eventos de duplicações de genoma completo foram postulados como importantes processos envolvidos na origem de novidades evolutivas em diversas linhagens de plantas. A lógica por trás dessa ideia baseia-se no fato de que esses eventos são capazes de gerar um excedente de material genético, relativamente disponível e capaz de, através do acúmulo de mutações, originar novos genes ou novas famílias gênicas, resultando assim no surgimento de novas características. Um exemplo de tal correlação ocorre, por exemplo, na origem evolutiva das plantas com flores. Cientistas consideram que os dois eventos de duplicação de genoma completo que precederam a evolução das plantas com flores foram cruciais para o surgimento de novos genes envolvidos na regulação e no desenvolvimento de características específicas desse grupo.

Mas seriam essas descobertas novas?

O advento de novas tecnologias de sequenciamento de DNA tem proporcionado um avanço significativo nas descobertas das bases genéticas de diversos processos biológicos. Tem permitido também a geração de uma tremenda quantidade de dados que, muitas vezes, sem um arcabouço teórico claro, acabam por não servir a um propósito muito claro no desenvolvimento do conhecimento científico.  O 1KP é, na verdade, um guarda-chuva para diversos subprojetos, espalhados em laboratórios de todo o mundo, cada qual com interesses particulares em diferentes linhagens de plantas. Esses subprojetos já realizaram importantes contribuições para o entendimento de vários aspectos da evolução das plantas, como, por exemplo, o entendimento da comunicação entre cloroplasto e núcleo, da evolução de vias metabólicas de variados compostos secundários, da origem e evolução dos mecanismos de resposta à auxina (um dos principais hormônios em plantas), dentre outras contribuições. A lista de publicações associadas aos subprojetos do 1KP pode ser encontrada aqui. Mas, a publicação da análise dos mais de mil transcriptomas das plantas em si pouco trouxe de novidade para a comunidade científica. Talvez o maior benefício desse esforço esteja na disponibilização gratuita desses. Com perguntas mais focadas, assim como aquelas realizadas no âmbito dos subprojetos, cientistas possivelmente serão capazes de estudar as implicações dos eventos duplicações de genoma completo, tão prevalentes na história evolutiva das plantas terrestres e ainda tão misteriosos.

Curiosamente, pensar nos mais de mil transcriptomas do 1KP me remeteu aos famosos contos árabes “As Mil e Uma Noites”, talvez pelo fato de ambos tratarem de uma quantidade semelhante de coisas: enquanto os contos árabes narraram eventos de mil e uma noites entre o rei Xariar e sua esposa Xerazade, o 1KP sequenciou “mil e tantos” transcriptomas das mais variadas espécies de plantas.  “As Mil e Uma Noites” é o título dado a um conjunto de histórias de várias origens, incluindo o folclore árabe, persa e indiano.  Não há uma versão definitiva da obra, pois diferentes edições divergem no número e conjunto de contos incluídos. No entanto, o eixo principal de todas as versões está organizado em torno das diversas histórias narradas, mas nunca concluídas, por Xerazade, esposa do rei Xariar, no intuito de escapar à sua quase inevitável execução.

De forma semelhante, o 1KP é constituído por um conjunto de subprojetos, cada qual contando uma história particular da evolução de um determinado grupo de plantas. Porém, no caso de “As Mil e Uma Noites”, os contos isoladamente têm, talvez, menor importância do que o conjunto da obra: cada conto é parte de uma longa história, cujo resultado final permite que Xerazade, após mil e uma noites, escape do seu destino fatal. Já no caso do 1KP, o valor parece estar nas contribuições isoladas de cada subprojeto, mais do que no conjunto da obra, pois essa não trouxe nada de muito novo, mas sobretudo deu mais suporte ao que já sabíamos anteriormente. Talvez falte ao 1KP um fio condutor, tal qual o de “As Mil e Uma Noites”, capaz de gerar interesse suficiente para manter-se vivo a longo prazo e resolver de fato as principais questões da história evolutiva das plantas.

Ana Almeida

California State University East Bay (CSUEB)

 

Para saber mais:

Carpenter E.J. et al. 2019. Access to RNA-sequencing data from 1,173 plant species: The 1000 Plant transcriptomes initiative (1KP). GigaScience 8: giz126.

Morris, J.L. et al. The timescale of early plant evolution. 2018. PNAS, 115: E2274-E2283.

Ruhfel, B.R. et al. 2014. From algae to angiosperms–inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evolutionary Biology, 14: 23.

Soltis, P.S.; Folk, R.A.; Soltis, D.E. 2019. Darwin Review: angiosperm phylogeny and evolutionary radiations. Proc. R. Soc. B, 286: 0190099.

Soltis, P.S. et al. 2015. Polyploidy and genome evolution in plants. Current Opinion in Genetics & Development, 35: 119-125.

 

Ser gay é genético?

Existe um “gene gay”? Ou seriam vários genes? Um estudo recente analisou os genomas de centenas de milhares de pessoas em busca dessas respostas.

Recentemente um laboratório passou a oferecer testes de predição genética com a seguinte chamada “How gay are you?”. O produto está sendo proposto no esteio de um grande estudo publicado em uma revista de prestígio acadêmico, que analisou dados de centenas de milhares de pessoas buscando elucidar as bases genéticas da orientação sexual. Continue Lendo “Ser gay é genético?”

Eu prefiro ser essa metamorfose ambulante

Em 1835, Charles Darwin, em sua histórica viagem a bordo do HMS Beagle, visitou o Chile, onde conheceu um naturalista alemão chamado Renous. Renous havia sido preso dois ou três anos antes por heresia. A prisão aconteceu quando as pessoas do povoado de San Fernando descobriram que ele transformava, “por bruxaria”, lagartas em borboletas. O conhecimento sobre a metamorfose dos insetos ainda não havia chegado aos cidadãos de bem de San Fernando, apesar de ser estudado já há mais de 2000 anos! O filósofo grego Aristóteles tinha um grande interesse na metamorfose completa dos insetos, pois acreditava que a transformação radical de uma simples larva em um inseto adulto altamente complexo oferecia uma oportunidade de testar suas ideias sobre reprodução animal e desenvolvimento embrionário. Ele acreditava que a metamorfose e o mistério da geração espontânea de vida estavam ligados. Para Aristóteles, explicar a metamorfose era uma oportunidade para explicar a origem da vida a partir de material não-vivo.

A grande maioria das espécies do subfilo Hexapoda (artrópodes com três pares de pernas) passa por algum tipo de metamorfose (Figura 1). A extensão das mudanças pelas quais os insetos passam durante seu desenvolvimento é usada para classificá-los em três categorias. Os ametábolos, como as traças dos livros, sofrem pouca ou nenhuma metamorfose. Quando nascem de ovos, eles já se parecem com adultos, ainda que pequenos, e simplesmente crescem fazendo uma série de mudas pelas quais saem de seus exoesqueletos pequenos, crescem e produzem um novo exoesqueleto, maior. Hemimetábolos são os insetos de metamorfose incompleta, como baratas, gafanhotos, percevejos e libélulas. Eles eclodem como ninfas –versões em miniatura de suas formas adultas– e à medida que crescem gradualmente desenvolvem asas e genitais. Por fim, os holometábolos são os insetos com metamorfose completa, como besouros, moscas, borboletas, mariposas e abelhas, que eclodem como larvas entram em um estágio de pupa inativo e finalmente emergem como adultos, que não se parecem com as larvas. Durante o estágio de pupa, órgãos e tecidos são extensamente remodelados e, em alguns casos, completamente reconstruídos. O resultado é uma mudança drástica na morfologia, na fisiologia e no comportamento de um inseto.

tatiana 1.png
Figura 1. Árvore filogenética que mostra a relação entre ordens do subfilo Hexapoda e a classificação dos insetos de acordo com a extensão da mudança que ocorre durante seu desenvolvimento (modificado de Cheong et al. 2015). 

Durante sua evolução, os insetos apresentaram várias estratégias de história de vida, algumas das quais persistem nas ordens atuais. Os primeiros insetos não sofriam metamorfose. Eles nasciam dos ovos essencialmente como adultos em miniatura. Hoje, poucos insetos são ametábolos. Com a evolução das asas e do voo, o adulto passou a ser o estágio terminal sem nenhuma muda, e surgiu o estágio imaturo, denominado ninfa, que não possuía asas e órgãos genitais (hemimetábolos). Embora as ninfas geralmente se assemelhem ao adulto, a diferença entre os dois estágios pode ser bastante dramática, como visto na transição da ninfa aquática para o adulto aéreo nas libélulas. Cerca de 350 milhões de anos atrás, no período Cambriano, alguns insetos mudaram sua forma de amadurecer, chegando a ter mudanças extremas durante o desenvolvimento, com um estágio larval que nada se parece com o adulto. A observação de grupos com diferenças relativamente pequenas entre larvas, pupas e adultos, como os insetos da ordem Raphidioptera (Figura 2), facilita o entendimento da evolução da metamorfose como um processo contínuo, em vez de uma transformação abrupta. As larvas desses insetos não diferem consideravelmente dos imaturos de hemimetábolos e uma muda converte sua larva em pupa móvel com asas externas e mandíbulas e pernas livres. Na última muda, o adulto emerge.

tatiana 2.png
Figura 2. Metamorfose em Raphidioptera, um holometábolo basal. (a) Um ínstar larval tardio (possivelmente final). (b) Uma pupa macho do instar intermediário, vistas lateral (esquerda) e ventro-lateral (direita). (c) macho adulto. Barras de escala, 5 mm. (Jindra. 2019).

Há duas hipóteses para explicar a evolução da metamorfose completa (Figura 3). Na primeira, a pupa é considerada uma versão modificada do último ínstar larval (hipótese 1). A favor dessa hipótese está a observação de que estágios de repouso em forma de pupa não são exclusivos de holometábolos, pois evoluíram independentemente em alguns hemimetábolos. Na segunda (hipótese 2), haveria em insetos hemimetábolos um estágio embrionário críptico, a pró-ninfa, da qual evoluiu a larva dos holometábolos. O estágio larval de vida livre, capaz de se alimentar, tornou-se dedicado ao crescimento e os estádios da ninfa dos hemimetábolos foram reduzidos a um único estágio incapaz de se alimentar, a pupa, que proporcionava a transição para o adulto. Um experimento interessante foi o tratamento experimental de pró-ninfas com um hormônio inibidor da metamorfose, o hormônio juvenil: ele induz a diferenciação tecidual em pró-ninfas, imitando os processos que ocorreram durante a evolução da larva. Uma diferença importante entre as duas hipóteses é que na hipótese 1 pressupõe-se que a evolução da larva antecedeu o surgimento da pupa (que é, portanto, uma larva modificada), e os ínstares larvais anteriores são considerados homólogos à ninfa dos hemimetábolos. De acordo com hipótese 2, o estágio larval, por sua vez, evoluiu da pró-ninfa embrionária. O assunto está longe de ser resolvido.

tatiana 3.png
Figura 3. Hipóteses alternativas para relações evolutivas entre os estágios dos holometábolos e os de um ancestral hipotético hemimetábolo. As caixas verdes à direita marcam os estágios embrionários sucessivos (E1, E2). Esquerda: hipótese 1, na qual a larva eclode em um estágio correspondente a E2, que seria o pró-ninfa de hemimetábolos. Todos os ínstares larvais de holometábolos (amarelo) seriam equivalentes à pró-ninfa embrionária (PN), enquanto todos os ínstares juvenis de hemimetábolos equivaleriam à pupa (laranja). Direita: hipótese 2, na qual larvas de hemi e holometabólos eclodiriam ambas após E2. A pupa seria uma larva de hemimetábolo modificada em estágio tardio (modificado de Jindra. 2019).

Também podemos nos perguntar se haveria algum ganho adaptativo da metamorfose completa. A metamorfose foi tão bem-sucedida que, hoje, mais de 80% das espécies de insetos, possivelmente representando cerca de 60% de todas as espécies de animais do planeta, passam por uma metamorfose completa. De fato, a metamorfose permite que imaturos e adultos se alimentem de diferentes recursos. Darwin destaca, em “A origem das espécies”, que diferentes estágios podem estar diferencialmente adaptados a nichos particulares. Por exemplo, enquanto as lagartas estão ocupadas devorando folhas, completamente desinteressadas na reprodução, as borboletas voam de flor em flor em busca de néctar e parceiros. Os adultos das moscas varejeiras, assim como as borboletas, alimentam-se de néctar, mas suas larvas se desenvolvem em matéria orgânica em decomposição ou até mesmo de tecidos de hospedeiro vivo, como vimos em dois textos aqui no blog (sobre entomologia forense e terapia larval). Adultos e larvas não competiriam pelos mesmos recursos. Essa explicação, no entanto, não é facilmente estendida para entender a evolução de um estágio adicional de pupa, um estágio imóvel e puramente de desenvolvimento. Uma outra hipótese levantada é que a metamorfose completa seja uma adaptação que permite dissociar o crescimento (no estágio de larva) e a diferenciação (no estágio de pupa). O principal benefício da metamorfose completa seria, assim, a dissociação entre crescimento rápido na larva e diferenciação dos tecidos adultos nas pupas, facilitando a exploração de recursos alimentares efêmeros pelas larvas. A maioria das espécies precisa atingir um peso crítico antes da transição para a maturidade. Com as rápidas taxas de crescimento das larvas, o peso crítico seria atingido em uma idade menor, o que seria um traço adaptativo. Alternativamente, dissociar crescimento e diferenciação pode ser benéfico em situações de intensa competição por recursos efêmeros.

Talvez, a metamorfose tenha ajudado os insetos a conquistarem diversos ambientes e contribuído para sua resiliência. Com mais de um milhão de espécies descritas e uma história de mais de 3,5 bilhões de anos, os insetos continuarão passando por seus estágios de ovo, larva, pupa e adulto, mesmo quando as condições climáticas forem inviáveis para animais como os vertebrados.

Tatiana Teixeira Torres (USP)

 

Para saber mais:

Uma edição especial do periódico Philosophical Transactions of the Royal Society B (agosto de 2019), trouxe uma série de discussões sobre metamorfose dos insetos:

Este artigo apresenta uma introdução à edição especial, mostrando os destaques apresentados nos demais artigos da edição.

Os autores apresentam dados de desenvolvimento, genéticos e endócrinos de diversos grupos de insetos para discutir hipóteses sobre a evolução da metamorfose de insetos. Eles sugerem que o desenvolvimento de holometábolos nos estágios larva-pupa-adulto seja equivalente ao de pró-ninfa>ninfa>adulto de insetos hemimetábolos, a hipótese 1 descrita no texto.

Neste artigo, o autor descreve claramente as duas hipóteses propostas para explicar a evolução da metamorfose. Mostra também descobertas sobre a sinalização por hormônio como um suporte à hipótese 2, na qual a pupa teria evoluído de um estágio pré-adulto final.

Falta diversidade no estudo da genética humana

O estudo das bases genéticas de doenças humanas tem se concentrado em populações de origem europeia. Esse foco estreito deixa de fora grande parcela da humanidade. Isso enfraquece a nossa compreensão sobre a base genética de doenças humanas. É preciso injetar diversidade no estudo da genômica humana.

O nosso conhecimento sobre a genética humana aumentou vertiginosamente nas últimas décadas. Grande parte dessa transformação deve-se à possibilidade de gerar dados para genomas inteiros, algo cada vez mais barato e feito em amostras progressivamente maiores, muitas vezes envolvendo milhares de indivíduos.

O que aprendemos de novo? Os estudos genômicos permitiram identificar  variantes genéticas que estão associadas a traços de interesse, como por exemplo uma maior predisposição a doenças. Para alcançar tal conhecimento, a estratégia mais usada é a da “análise de associação genômica ampla” (do inglês genome-wide association analysis, abreviado por GWAS). Essa análise consiste em comparar genomas de dois grupos, um com a doença (os “casos”) e outro sem (os “controles”). Se houver uma variante genética que é muito mais comum nos casos do que nos controles, dizemos que ela está “associada” com a doença. Essa associação é um achado estatístico, mas não necessariamente implica que a variante encontrada é “causal”, no sentido de afetar uma função de um modo que explica a doença. Para se inferir se uma mutação tem um efeito causal sobre uma doença são necessários estudos adicionais, comparando o funcionamento da variante genética nos indivíduos com e sem a doença. Continue Lendo “Falta diversidade no estudo da genética humana”

A fonte da juventude

Cientistas apresentam terapia capaz de reverter o relógio biológico em nove voluntários saudáveis.

No início desse ano, li um livro intitulado “Juventude eterna, pra quem?”, escrito por uma amiga de longa data, Maria Falcão. A história começa no ano de 2112, e busca, através da ficção científica, discutir algumas das implicações da incansável busca humana pela juventude eterna. O livro narra as diferentes perspectivas dos personagens envolvidos em um experimento revolucionário: o implante de um chip capaz de parar o processo de envelhecimento, resultando assim na juventude eterna. Não vou entrar em mais detalhes da história, caso vocês se interessem pela leitura, mas uma pergunta inquietante que permeia o livro ficou comigo até hoje, ainda sem resposta: caso tivéssemos acesso a um dispositivo capaz de barrar o envelhecimento, tal qual o chip descrito no livro, o que eu faria? Optaria pela juventude eterna? Continue Lendo “A fonte da juventude”

Tem uma mosca na minha ferida!

Para a maioria das pessoas, as moscas causam apenas uma reação: nojo. De fato, não há como negar que esses insetos sejam asquerosos. Eles entram em seu lixo, passeiam pelo esgoto e cadáveres –como discutido em um texto recente do Darwinianas– e regurgitam em tudo. Por causa dessas excursões por locais peculiares, ficam cobertos de bactérias e outros patógenos para depois andar com suas patinhas sujas por toda a sua comida. Pois é, as moscas são realmente nojentas, mas é justamente a atração desses insetos por material em decomposição que faz com que suas larvas sejam benéficas para a saúde humana.

Feridas crônicas podem se desenvolver em pacientes com diversas condições, como diabetes ou doença vascular, por exemplo. Essas feridas podem ter tecidos necrosados e infectados, e muitas vezes se tornam úlceras sem cicatrização –desesperadamente desagradáveis ​​para os pacientes que sofrem com elas. Em muitos casos, essas feridas podem piorar e resultar na amputação de partes ou mesmo de membros inteiros. No entanto, a aplicação de larvas (esterilizadas) pode reverter esse quadro. Quando todos os outros tratamentos falham, larvas de moscas em seu primeiro instar (larvas recém-nascidas) podem transformar, em poucos dias, uma úlcera estagnada em uma ferida limpa e saudável em processo de cicatrização. Esse tratamento alternativo é chamado de terapia larval, biocirurgia ou larvoterapia. A terapia larval é uma opção de atraente de desbridamento (remoção do tecido necrótico e outros resíduos de uma ferida) porque as larvas utilizadas para fins clínicos comem apenas tecidos mortos e deixam o tecido vivo intacto. Todos os outros procedimentos de desbridamento inevitavelmente destroem parte do tecido vivo.  

O uso de larvas para o desbridamento de feridas difíceis e crônicas não é uma ideia nova. Os aborígines australianos já usavam larvas para limpar feridas há séculos, mas as larvas passaram a ser apreciadas universalmente somente após algum tempo, quando os cirurgiões militares notaram que os soldados com feridas infestadas por larvas apresentavam uma melhor e mais rápida recuperação. Ambroise Paré foi um cirurgião-barbeiro que serviu no exército francês e fez um dos primeiros relatos sobre o benefício das infestações durante a batalha de St. Quentin, em 1557. Em 1829, o cirurgião de campo de Napoleão Dominique Larrey também observou os efeitos benéficos das larvas em ferimentos sofridos por soldados durante uma expedição à Síria. Ele notou que as larvas que se desenvolviam em ferimentos sofridos em batalha impediam o desenvolvimento de infecções e aceleravam a cura. Não há evidências, no entanto, de que Paré ou Larrey tenham introduzido larvas nas feridas de seus pacientes deliberadamente. Isso só aconteceu quando John Forney Zacharias, um cirurgião de Maryland durante a guerra civil americana, iniciou oficialmente a terapia com larvas, que ele explica ter salvado muitas vidas. Mais tarde, durante a Primeira Guerra Mundial, William Baer observou que as larvas auxiliavam na cicatrização de feridas e desenvolveu com sucesso um método para produzir larvas esterilizadas que não disseminariam infecções. A terapia foi amplamente utilizada até depois da Segunda Guerra Mundial, quando houve a descoberta de antibióticos e o desenvolvimento de melhores técnicas cirúrgicas, que deixaram as larvas em segundo plano, utilizadas apenas como último recurso.

O interesse renovado na terapia larval foi desencadeado com ocorrências generalizadas de “superbactérias”, resistentes a diversas classes de antibióticos. Por exemplo, a bactéria que ocorre mais comumente em feridas, Staphylococcus aureus, adquiriu resistência à meticilina em 1961, dois anos após sua introdução como substituto da penicilina. A evolução da resistência a antibióticos levou a um aumento do tempo de hospitalização e tratamento de pacientes com feridas crônicas. Como resultado, desde 1990, as larvas voltaram a ser utilizadas no tratamento de certas feridas que, de outra forma, seriam intratáveis. ​​Suas secreções são eficazes mesmo contra S. aureus resistente a antibióticos. As célebres larvas também atuaram no filme Gladiador (2000). Em uma das cenas, o protagonista desmaia após ser ferido em uma batalha e, quando ele acorda, encontra sua ferida cheia de larvas aplicadas por um amigo. As larvas limparam a ferida também na versão cinematográfica da terapia larval. Em 2004, o FDA (“Food and Drug Administration”) aprovou o uso de larvas estéreis em aplicações médicas nos Estados Unidos.

As larvas usadas na terapia geralmente pertencem a espécies de moscas varejeiras (apresentadas em texto sobre Entomologia Forense aqui no Darwinianas), como a Lucilia sericata. No Brasil, larvas de Cochliomyia macellaria também estão sendo testadas para o mesmo propósito. Essas larvas alimentam-se exclusivamente de material orgânico em decomposição e se afastam de uma ferida quando há apenas tecido saudável. Elas também são fáceis de cultivar em condições estéreis e são relativamente resistentes (podem ser resfriadas e armazenadas a 5°C). Cerca de 10-20 larvas esterilizadas são aplicadas por centímetro quadrado de ferida. Como as larvas de moscas são altamente móveis, há necessidade de contê-las em um curativo especial que lhes permite alcançar o tecido a ser tratado, mas impede que saiam da ferida. O progresso do tratamento é verificado diariamente, e as larvas são trocadas pelo menos a cada três dias por causa de seu rápido crescimento e ciclo de vida curto em temperaturas corporais humanas.

As larvas limpam o tecido necrótico com uma grande velocidade, apesar de não possuírem dentes. Elas secretam enzimas proteolíticas digestivas para liquefazer o tecido necrosado que servirá para sua alimentação. Juntamente com as enzimas, as larvas secretam outras moléculas com papel ativo na cicatrização da ferida: fatores estimulantes do crescimento celular, fatores antimicrobianos e fatores antiinflamatórios. A rápida melhora no quadro se dá então pelas diferentes atuações da larva na ferida. A alimentação competitiva das larvas das moscas varejeiras remove rapidamente a fonte de alimento das bactérias e muitas delas são digeridas no processo. A remoção do tecido morto também permite uma melhor difusão do oxigênio nos tecidos saudáveis, o que impede a proliferação de bactérias anaeróbicas. Elas também secretam fatores antibacterianos e antifúngicos  eficazes contra inúmeros patógenos, incluindo cepas resistentes a antibióticos. Além de combater a infecção, as secreções larvais também induzem a migração de fibroblastos, proliferação e remodelação do tecido, acelerando a recuperação. Finalmente, as larvas podem promover o crescimento do tecido por meio da estimulação física do tecido da ferida. O movimento ajudaria o fluxo das secreções das larvas e a quebra mecânica do tecido morto.

Todos esses processos se tornaram alvos para desenvolvimento de produtos biotecnológicos. Max Scott, da North Carolina State University, por exemplo, aposta na nova geração da terapia larval, combinando a atividade das larvas na ferida à atuação do fator de crescimento humano derivado de plaquetas (PDGF). Ele e sua equipe geraram uma linhagem de L. sericata transgênica que produz e secreta o fator de crescimento humano. O PDGF estimula a sobrevivência celular, a proliferação de fibroblastos e a quimiotaxia, reorganização da actina e produção e secreção de outros fatores de crescimento. Sua produção torna a larva ainda mais eficiente no desbridamento. Mesmo os estudos básicos sobre a biologia e evolução do hábito alimentar em Calliphoridae realizado pelo nosso grupo, em colaboração com a Profa. Patrícia J. Thyssen na Universidade de Campinas, contribuem para a compreensão dos mecanismos moleculares subjacentes às preferências alimentares e dinâmica na ferida. Ensaios de preferência alimentar nos permitem escolher, dentre as espécies de Calliphoridae, aquelas que se alimentam exclusivamente de tecido necrosado, sem invadir o tecido sadio, enquanto nossa análise da expressão gênica nas larvas pode revelar proteínas secretadas com potencial terapêutico. Essas proteínas larvais podem ser estudadas para o desenvolvimento de pomadas para desbridamento, sem a necessidade da aplicação das larvas, que ainda encontra uma certa resistência de profissionais de saúde e do público em geral. Enquanto as pomadas não chegam ao mercado, as larvas funcionam como dispositivos médicos em miniatura com o poder de ajudar a curar e livrar muitos da carga dolorosa e incapacitante de feridas crônicas.

Tatiana Teixeira Torres (USP)

Para saber mais:

– Masiero FS, Martins DS e Thyssen PJ (2015) Terapia Larval e a aplicação de larvas para cicatrização: revisão e estado da arte no Brasil e no mundo. Revista Thema, 12(01): 4-14.

Nesse artigo, os autores revisam a literatura sobre terapia larval, apresentando a aplicação de larvas como alternativa para cicatrização de feridas. Um dos objetivos dos autores é desmistificar a modalidade terapêutica e estimular profissionais da saúde a aplicá-la em larga escala.

– Sherman RA (2014). Mechanisms of Maggot-Induced Wound Healing: What Do We Know, and Where Do We Go from Here? Evidence-Based Complementary and Alternative Medicine, 2014: 592419.

Revisão dos estudos clínicos controlados que testaram a eficácia da terapia larval. Pelos dados clínicos levantados há consenso de que o uso das larvas é efetivo no desbridamento. As evidências clínicas para a cicatrização acelerada de feridas são escassas, mas estudos clínicos pequenos sugerem fortemente que as larvas realmente promovem o crescimento de tecidos e cicatrização de feridas.

– National Geographic (2012) Maggot Medicine.

Programa mostrando a utilização da terapia larval. O vídeo contém cenas reais de larvas sendo aplicadas em uma ferida. Essas cenas podem ser desagradáveis para alguns espectadores.

Adaptação em ritmo acelerado

Mutações vantajosas –aquelas que aumentam as chances de sobrevivência e reprodução de seu portador—surgem muito rapidamente em populações de moscas expostas a inseticidas. O que explica a velocidade desse processo? Por que a adaptação pode ocorrer tão rapidamente?

Nas útimas décadas inseticidas vêm sendo usados cada vez mais na agricultura, entre eles os organofosforados. Largamente usados em todo o mundo, eles foram desenvolvidos para atacar espécies que causam prejuízos, mas também são tóxicos para aquelas que não atacam plantações, como é o caso da mosca das frutas Drosophila melanogaster. O uso de inseticidas resulta num fascinante experimento de seleção natural, em que moscas que carregam mutações que conferem resistência ao inseticida tornam-se cada vez mais comuns. Tratamos da evolução de resistência a pesticidas num post anterior, em que a diversidade de mecanismos de resistência é discutida. Continue Lendo “Adaptação em ritmo acelerado”