O DNA na era digital

Cientistas desenvolvem nova técnica capaz de sintetizar DNA de maneira mais rápida, barata e precisa. Por meio dessa técnica, será possível construir um genoma completo de uma bactéria em apenas um dia!

Em Abril de 1953, a revista Nature publicou um pequeno artigo de apenas 1 página no qual os autores, J.D. Watson e F.H. Crick, propuseram o modelo da estrutura do DNA que veio a ser amplamente aceito pela comunidade científica. Controvérsias à parte, o modelo da dupla hélice proposto pelos autores também sugeria claramente um mecanismo de replicação do DNA, e resultou na consolidação do que conhecemos hoje como Biologia Molecular. Começou aí também a corrida para desvendar o chamado código genético, que descreve as regras pelas quais se dá a relação entre a sequência de nucleotídeos no DNA e a sequência de aminoácidos nas proteínas. Desde então, o DNA ganhou um papel central nas explicações dos processos moleculares e no entendimento da relação entre os genes, as características físicas dos organismos e a herança.

Termos como ‘armazenamento de informação’, ‘código’, ‘programa’, ‘receita’, manual de instruções’ e ‘mensagem’ inundaram a comunidade de biólogos buscando caracterizar o papel dos genes e/ou da informação genética contida nas moléculas de DNA. Essas metáforas informacionais estão largamente presentes em livros didáticos, assim como no discurso de muitos pesquisadores da área. Por exemplo, é muito comum encontrarmos a ideia de que o DNA contém o “programa para o desenvolvimento do organismo”, ou que o DNA é um “manual de instruções do funcionamento celular”. As limitações dessas metáforas para o ensino de ciências e para a própria pesquisa biológica já foram amplamente discutidas, mas elas continuam sendo utilizadas a todo vapor.

No início do século XXI, no entanto, essas metáforas foram alçadas a um novo patamar. Pela primeira vez, cientistas desenvolveram um mecanismo de armazenamento de informação não-biológica utilizando o DNA, dando início à chamada era do armazenamento de informação digital no DNA (do inglês, DNA digital data storage). Cinco anos depois, cientistas da Harvard University foram capazes de armazenar no DNA a informação digital de um texto escrito em HTML, imagens em JPEG e um programa escrito em JavaScript. Mas, para entendermos como isso é possível, precisamos entender um pouco mais sobre como a informação é armazenada nos computadores e laptops que utilizamos diariamente.

Hoje, grande parte dos computadores e aparelhos digitais utiliza um sistema binário (ou de base 2) de armazenamento de informação, no qual todas as quantidades são representadas com base em dois números: 0 e 1. Vem daí o nome bit, ou dígito binário, do inglês Binary Digit. Um agrupamento de 8 bits corresponde a 1 byte (do inglês Binary Term), unidade básica da computação. De maneira análoga, os cientistas propuseram a utilização dos blocos de construção do DNA (A, C, T e G) para armazenar qualquer tipo de informação. Assim, ao invés de 1s e 0s, utilizaríamos As, Cs, Ts e Gs. Nos últimos anos, cientistas foram capazes de estocar as mais variadas informações em longas cadeias de DNA, incluindo as 587.287 palavras de Guerra e Paz de Lev N. Tolstoi, o clássico Smoke on the Water do Deep Purple, e até um GIF de um cavalo galopando, reproduzindo as 5 imagens de Eadweard Myubridge feita em 1880. Um vídeo interessante que explica a tecnologia utilizada nesse último estudo, e também apresenta o GIF criado, pode ser visto aqui. Se você quiser saber mais sobre CRISPR, veja esse post do Darwinianas.

Mas, quais seriam as vantagens do armazenamento de informações no DNA? Várias características da molécula de DNA são atrativas para cumprir tal função. Por exemplo, o DNA é extremamente compacto. A partir da utilização do DNA como fonte de armazenamento de informação, seríamos capazes de arquivar todos os filmes já produzidos num espaço menor do que um cubo de açúcar de aproximadamente 4 gramas.  Alguns cientistas da computação acreditam que estamos chegando ao limite físico da nossa capacidade de armazenamento de informação em fitas magnéticas, que ainda é a maneira como a maior parte da informação gerada é usualmente armazenada. Portanto, a necessidade da busca de novos meios de armazenamento de informação deriva, em grande parte, da nossa capacidade de geração de uma quantidade tremenda de informação em uma velocidade sem precedentes.  Além disso, se adequadamente preservada, uma molécula de DNA é altamente estável e capaz de armazenar informação por milhares de anos.

Mas, para armazenarmos informação em moléculas de DNA, são requeridos pelo menos três processos: (1) a síntese de moléculas de DNA; (2) a leitura do DNA sintetizado através de técnicas de sequenciamento; e, (3) uma linguagem capaz de traduzir a informação armazenada em algo inteligível.

Nos últimos anos, as novas técnicas de sequenciamento de DNA em larga escala expandiram de maneira surpreendente a velocidade, assim como o tamanho dos fragmentos sequenciados. Além disso, diversas linguagens de programação já foram utilizadas para processar a informação armazenada no DNA. O gargalo dessa nova era encontra-se, principalmente, no alto custo associado à síntese in vitro de DNA, técnica também chamada de DNA printing.

Contudo, em Junho desse ano, foi publicado em Nature Biotechnology um artigo que promete solucionar esse problema. Palluk e colaboradores descreveram um novo método de síntese de DNA que reduz significativamente o custo, além de aumentar a velocidade de síntese e sua acurácia.  Você deve estar se perguntando como isso é possível. Explico. Os cientistas utilizaram uma enzima já presente em nosso corpo, chamada de desoxinucleotidiltransferase terminal (TdT), ou transferase terminal, presente em células do nosso sistema imune. Essa enzima participa da diversificação dos receptores de partículas estranhas ao corpo (os antígenos), permitindo que o organismo seja capaz de reconhecer uma molécula estranha sem a necessidade de contato prévio. Dentro de um sistema vivo, essa enzima é capaz de adicionar até 200 nucleotídeos por minuto. Mas, como nem tudo são flores, essa enzima normalmente adiciona nucleotídeos randomicamente à ponta do DNA, e portanto não é útil a cientistas que precisam de uma sequência específica de nucleotídeos.

O pulo do gato, descrito por Palluk e colaboradores, é a ligação dessa enzima a nucleotídeos específicos. A ligação enzima-nucleotídeo pode ser posteriormente rompida, liberando a enzima após a adição no novo nucleotídeo ao DNA. Assim, fragmentos de DNA podem ser produzidos passo-a-passo, com a adição de um nucleotídeo a cada ciclo e uma acurácia de cerca de 98%. Os pesquisadores foram capazes de alongar primers de DNA, pequenas fragmentos de ácido nucléico necessários para a iniciação da replicação do DNA, a uma velocidade de um nucleotídeo a cada 10-20 segundos. Dessa forma, um único conjugado é capaz de produzir uma molécula de 4.320 nucleotídeos por dia. Considerando que essa enzima é produzida em larga escala e a baixo custo, milhares dessas enzimas podem ser utilizadas paralelamente para a produção do genoma completo de uma bactéria em um único dia.

Picture1.png
Figura 1: Alongamento da molécula de DNA, nesse caso representada por um primer ou iniciador, por meio da utilização de conjugados de TdT-nucleotídeos. Após a adição de um nucleotídeo à molécula de DNA (extensão), a ligação DNA-TdT é desfeita por meio de uma reação química denominada desproteção. (Figura modificada de Palluk et al. 2018)

É claro que as implicações das possibilidades de produção de baixo custo de uma molécula de DNA são muitas e variadas. Podemos, por exemplo, utilizar essa tecnologia para produzir genes humanos relacionados à produção de proteínas importantes, ou para produzir bactérias e outros organismos com sequências específicas de DNA. Mas, além disso, essa tecnologia nos permite avançar a fronteira da tecnologia da informação, solucionando o primeiro passo na utilização do DNA como substrato para o armazenamento de informação digital: a síntese de DNA a baixo custo.

Apesar de promissoras, as técnicas de síntese de DNA em laboratório trazem consigo implicações éticas importantes. Um dos principais questionamentos refere-se ao desenvolvimento de organismos sintéticos que podem, intencionalmente ou não, ser liberados na natureza. Outra grande preocupação é o uso dessas técnicas para a construção de armas biológicas. As discussões éticas a respeito desse novo campo da Biologia Sintética, do qual as ferramentas de síntese de DNA em laboratório são parte fundamental, não podem ser ignoradas e merecem um post em separado. Essa é uma área na qual precisamos, sem dúvida, avançar cautelosamente para que tenhamos na devida conta as variadas implicações, inicialmente previstas ou não, da técnicas que desenvolvemos.

A descoberta da estrutura do DNA, há 65 anos, teve uma enorme repercussão na Biologia. Hoje, essa molécula ainda nos surpreende. Talvez seja o DNA também a molécula que vai revolucionar a era digital!

Ana Almeida

Para saber mais:

Anderson et al. 2012. Engineering and ethical perspectives in synthetic biology: Rigorous, robust and predictable designs, public engagement and a modern ethical framework are vital to the continued success of synthetic biology. EMBO Rep., 3(7): 584-590.

Church, G.M.; Gao, Y.; Kosuri, S. 2012. Next-Generation Digital Information Storage in DNA. Science, 377(6102): 1628.

Erlich, Y.; Zielinski, D. 2017. DNA Fountain enables a robust and efficient storage architecture. Science, 355(6328): 950-954.

Goldman et al. 2013. Towards practical, high-capacity, low-maintenance information storage in synthesized DNA. Nature, 494(7435). DOI:  10.1038/nature11875

Kosuri, S.; Church, G.M. 2014. Large-scale de novo DNA synthesis: technologies and applications. Nature Methods, 11: 499-507.

(Foto: Digital DNA, Mirahorian Dan)

Quais as consequências a longo-prazo da perda de biodiversidade?

Estudo de mais de 20 anos sugere que os efeitos da perda de biodiversidade são dependentes do contexto. Ou seja, ecossistemas distintos respondem de diferentes maneiras à perda de biodiversidade, e nós ainda temos muito o que aprender.

Desde criança, sempre sonhei com matas densas, cheias de bichos e plantas das mais variadas cores, formas e tamanhos. Por vezes, esses sonhos eram ricos de uma sensação interminável de aventura e descoberta: em cada direção havia algo novo a conhecer e se encantar. Nas manhãs após esses sonhos, acordar era um choque de realidade, pois as paredes quase brancas do meu quarto estavam muito aquém da riqueza desses universos que deixava para trás. Para os amantes da natureza como eu, imaginar essas paisagens é tarefa fácil. Hoje, como bióloga, vejo na prática que estudar a diversidade da vida é tão fascinante quanto desvendá-la em meus sonhos, e os processos que geram essa imensa biodiversidade na natureza são ainda mais criativos do que a minha imaginação de criança.

Hoje conhecemos algo em torno de 260.000 espécies de plantas e quase 2 milhões de espécies animais, além de milhares de espécies de fungos e incontáveis espécies de bactérias. Mas, alguns cientistas estimam que ainda desconhecemos algo em torno de 86% e 91% das espécies existentes nos ambientes terrestres e nos oceanos respectivamente! Esses números são, ao mesmo tempo, impressionantes e assustadores. Impressionantes, pois se a diversidade conhecida já é fascinante e os usos que dela fazemos incontáveis, é instigante imaginar que ela representa menos (muito menos!) da metade de tudo que existe na natureza.

Mas, esses números são também assustadores porque com as taxas atuais de extinção de espécies e destruição de ambiente naturais cientistas calculam que até 54% das espécies poderão ser extintas na próximas décadas. Frente a esse cenário não muito otimista, o estudo da biodiversidade e dos impactos causados pela sua perda são imperativos.

Os efeitos da perda de biodiversidade no funcionamento das comunidades ecológicas é um tema largamente estudado na ecologia. No entanto, vários aspectos importantes dos efeitos ecossistêmicos de longo-prazo da perda de biodiversidade ainda permanecem sem resposta. Um deles diz respeito a como esses efeitos são dependentes do contexto ambiental. Por exemplo, qual o efeito da perda de biodiversidade em diferentes comunidades vegetais? E como nem toda perda de biodiversidade se dá de forma semelhante, qual o efeito da perda de diferentes números de espécies na comunidade? A diversidade de comunidades vegetais é capaz de tamponar a variabilidade ambiental decorrente de perturbações externas ou flutuações nas condições ambientais?

Para tentar responder essas perguntas, cientistas estudaram os efeitos a longo prazo da perda de biodiversidade em 30 ilhas florestadas dos lagos Hornavan e Uddjaure, no norte da Suécia. Nessa região, a principal perturbação ambiental é o fogo que ocorre naturalmente, decorrente de tempestades de raios: ilhas maiores tendem a sofrer mais queimadas do que ilhas menores, criando um gradiente natural de perda de biodiversidade entre as ilhas de grande (com mais de 1.0 hectare), médio (entre 0.1 e 1.0 hectare) e pequeno porte (com menos de 0.1 hectare). Nessas ilhas, os pesquisadores ativamente removeram, em diferentes combinações, três das principais espécies do sub-bosque local (Vaccinium myrtillus, Vaccinium vitis-idaea e Empetrum hermaphroditum) (Figura 2), utilizando o gradiente natural de diversidade das diferentes ilhas. Em algumas ilhas, essas espécies chegaram a representar 98% do sub-bosque. Além disso, em geral, ilhas de maior porte apresentaram também maior produtividade e maior fertilidade dos solos, enquanto as ilhas menores apresentaram menor produtividade e fertilidade. Assim, o gradiente naturalmente formado simulou as variadas condições nas quais a perda de biodiversidade foi estudada pelos pesquisadores.

 

 

Figura 2 – (a) Localização dos lagos Hornavan e Uddjaure, ao norte da Suécia. (b) Vaccinium myrtillus (Photo: Anneli Salo, https://www.google.com/search?q=Vaccinium+myrtillus&client=firefox-b-1&tbm=isch&source=lnt&tbs=sur:fc&sa=X&ved=0ahUKEwiQ06207qbbAhXNHTQIHURyAygQpwUIIA&biw=1138&bih=501&dpr=1.2#imgrc=DHc10hLDxVnvPM:; (c) Vaccinium vitis-idaea (Photo: Arto J, https://commons.wikimedia.org/wiki/File:Lingonberry_(Vaccinium_vitis-idaea)_-_panoramio.jpg); (d) Empetrum hermaphroditum (Photo: Dawn Endico,  https://commons.wikimedia.org/wiki/File:Empetrum_nigrum_Denali_AK.jpg).

Um dos aspectos principais desse estudo é que ele foi conduzido em comunidades naturais, em contraste com os estudos anteriores a respeito do papel da biodiversidade no funcionamento dos ecossistemas, geralmente realizados em ambientes altamente controlados e em comunidades aleatoriamente construídas. Nesse trabalho, os autores estudaram os efeitos a longo prazo da perda de biodiversidade na biomassa da comunidade vegetal e na variabilidade temporal dessa biomassa por um período de 20 anos. Ou seja, eles observaram a capacidade das comunidades de plantas em incorporar matéria orgânica após a remoção de uma, duas ou três das espécies vegetais dominantes do sub-bosque, e estudaram também como essa incorporação de biomassa variou ao longo do tempo.

Os autores confirmam o fato de que a perda de espécies nas diferentes ilhas reduz significativamente a biomassa vegetal das comunidades. Mas, contrário aos achados anteriores a esses estudos altamente controlados, os dados sugerem que esse efeito não necessariamente aumenta com o tempo, provavelmente devido a respostas compensatórias de outras espécies da comunidade. Porém, essas respostas compensatórias dependem largamente das interações entre as espécies locais e do contexto ecológico. Ou seja, o efeito da perda de biodiversidade na biomassa de comunidades vegetais decresce com o tempo, e esse decréscimo é mais evidente em comunidades menos produtivas e menos férteis.

Outro dado interessante é que a perda de diferentes espécies acarretou um aumento na variabilidade temporal da biomassa dessas comunidades, e esse efeito foi observado em maior intensidade nas comunidades mais produtivas e nas ilhas mais férteis. Ou seja, em áreas de maior produtividade, a biomassa sofreu, decorrente da perda de biodiversidade, as maiores variações ao longo desses 20 anos, quando comparado as áreas de menos produtividade.

Em geral, o impacto negativo da perda de biodiversidade nas diversas ilhas estudadas foi dependente da espécie removida e da possibilidade de compensação pelas espécies remanescentes locais. Isso sugere que as repostas ecossistêmicas à perda de espécies depende sobremaneira do contexto ambiental. Nesse caso, um ecossistema seria resiliente à perda de espécies apenas se outras espécies locais fossem capazes de ocupar o nicho deixado pela(s) espécies eliminada(s). Ilhas maiores, ou áreas em contato próximo com outras regiões seriam capazes de suprir novas espécies para a comunidade, e, portanto mais resilientes a perda de espécies.

Com base no que já sabemos hoje, tanto de observações de campo quanto de estudo experimentais, parece inquestionável a importância da biodiversidade para a manutenção da saúde dos ecossistemas e, em última análise, de nós humanos. Há muitas décadas, a comunidade científica nacional e internacional aponta para a necessidade de preservação da biodiversidade, principalmente em um país como o nosso, que abriga uma quantidade impressionante de espécies, muitas das quais pouco ou nada estudadas. Mas, a despeito do que apontam os mais variados estudos, o Brasil parece, infelizmente, remar contra a maré.

Notícias na última semana anunciaram o provável nome do novo presidente do Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio), um dos principais órgãos ambientais do país, responsável pela criação, gestão e preservação de áreas de proteção ambiental no Brasil. O ICMBio gere, respectivamente, 9% e 24% dos territórios continental e marinho nacionais. O novo presidente, se for realmente confirmado, não parece possuir qualquer formação em gestão socioambiental, e sua indicação resulta, possivelmente, de uma negociata política. Infelizmente, ainda abordamos as questões ambientais de maneira pouco séria e um tanto inconsequente, em completo desalinho com o que apontam as pesquisas e a comunidade científica.

Se quisermos evitar surpresas futuras, precisamos levar a preservação da biodiversidade a sério, para que possamos através de mais estudos, como o relatado aqui, entender os efeitos de longo prazo da perda de espécies. A grande parte desses estudos vêm sendo realizados em ambientes temperados, com número relativamente pequeno de espécies, e ainda pouco sabemos a respeito dos efeitos da perda de espécies em ambientes tropicais.

Ana Almeida

(California State University East Bay)

Para saber mais:

Liu, J. et al. 2018. How does habitat fragmentation affect the biodiversity and ecosystem functioning relationship? Landscape Ecology, 33: 341-352.

Maynard, D.S.; et al. 2017. Competitive network determines the direction of the diversity-function relationship. PNAS, 114(43): 11464-11469.

Plimm, S.L. et al. 2014. The biodiversity of species and their rates of extinction, distribution, and protection. Science, 344: 1246752-1 – 1246752-10.

Novos inimigos invisíveis

Cientistas descobrem mais de 200 novas espécies de vírus de RNA em vertebrados, a partir de uma ampla busca por esses vírus em répteis, anfíbios e peixes.

Todos nós que crescemos durante a década de 1980 fomos de alguma forma marcados pelo início da epidemia de AIDS: o desconhecimento, o medo, e o preconceito marcavam então o cenário nacional e internacional. Foi apenas em 1984 que o vírus HIV foi isolado, dando início aos estudos da biologia viral e ao desenvolvimento de terapias antirretrovirais

Continue Lendo “Novos inimigos invisíveis”

Em busca da vida eterna

Em amplo estudo sobre a expectativa de vida dos ratos-toupeira-pelados, cientistas revelam que esses roedores desafiam a lei que rege o envelhecimento biológico, pois suas taxas de mortalidade não se alteram com a idade.

A morte é uma verdade inexorável para qualquer ser humano. A certeza da morte está sempre presente nos nossos inconscientes e contribui de forma importante para as sensações de ansiedade que sentimos no nosso cotidiano, como argumenta Irvin D. Yalom em sua obra “Staring at the Sun: Overcoming the Terror of Death”, traduzida para o português, em 2008, sob o título “De frente para o Sol”.

Continue Lendo “Em busca da vida eterna”

Vida semissintética é uma realidade cada vez mais próxima de nós

Cientistas são capazes de expandir o código genético e criar bactérias semissintéticas

O desejo de criar vida em laboratório a partir de moléculas não-vivas, ou de modificar organismos vivos com um objetivo específico, sempre povoou a mente de muitos de nós. Entre escritores, por exemplo, esse desejo se expressa nas mais mirabolantes histórias de ficção científica, nas quais personagens semi-humanos adquirem novas habilidades através da expansão do corpo por meio de aparatos tecnológicos. 

Continue Lendo “Vida semissintética é uma realidade cada vez mais próxima de nós”

O segredo das ervilhas: as plantas também aprendem!

Pesquisadores estudam condicionamento clássico em plantas e resultados apontam que as plantas são capazes de aprender por associação.

As plantas tiveram e seguem tendo um papel fundamental no estabelecimento e na manutenção da vida na Terra.  Durante a evolução do nosso planeta, os primeiros seres fotossintetizantes, chamados de cianobactérias, que surgiram há aproximadamente 2.5 bilhões de anos,  e modificaram definitivamente o ambiente terrestre devido à liberação de oxigênio livre (O2) na atmosfera, evento que ficou conhecido como o Grande Evento de Oxigenação. Esse evento teve consequências importantes para a vida na Terra, dentre as quais a formação da camada de ozônio (O3), assim como a morte de vários organismos que não eram capazes de metabolizar o oxigênio (através da respiração celular), conhecidos como anaeróbicos obrigatórios.  A linhagem que deu origem às plantas evoluiu a partir de eucariotos fotossintetizantes, resultantes da endossimbiose  dessas células com cianobactérias de vida livre. Para saber mais sobre a evolução de células eucarióticas veja o post do Darwinianas aqui. Além de servirem como uma das principais fontes da nossa alimentação, as plantas também fornecem diversos outros produtos de origem vegetal e têm efeito considerável no clima e um papel fundamental em todos os ecossistemas. Continue Lendo “O segredo das ervilhas: as plantas também aprendem!”

As estripulias do genoma

Cientistas publicam sequência do genoma da aranha doméstica comum (Parasteatoda tepidariorum) e descobrem a presença de eventos de duplicação completa do genoma nas aranhas e famílias aparentadas

O termo ‘genoma’ exerce em muitos um grande fascínio. Em termos biológicos, o genoma é o conjunto de todas as moléculas de DNA (ácido desoxirribonucleico) de um organismo, cada uma dessas moléculas constituindo um cromossomo, juntamente com outras moléculas, como as proteínas. As moléculas de DNA são componentes fundamentais dos processos de produção de proteína pelas células dos organismos vivos e são, também, hereditários, ou seja, transmitidos de uma geração à outra. Portanto, participam de processos fundamentais para a manutenção da vida. Além disso, alterações nessas moléculas podem estar, muitas vezes, ligadas a disfunções e doenças.

Desde a publicação da sequência do genoma humano em 2001, as promessas acerca das possibilidades de conhecimento e resolução dos problemas humanos, desde doenças a traços do comportamento, criaram uma falsa percepção de que o sequenciamento do genoma representaria a chave para abrir as portas da natureza humana. Mais de 15 anos depois, percebemos que, apesar dos avanços no conhecimento que temos a respeito da organização e do funcionamento do genoma, muitas perguntas ainda estão sem resposta. Longe de ser surpreendente, isso é natural e esperado, dado que processos patológicos ou características comportamentais envolvem muitos outros níveis de organização da matéria viva do que apenas o conhecimento da sequência de nucleotídeos que forma o genoma. Continue Lendo “As estripulias do genoma”