No Mundo Invertido: genética e evolução das inversões cromossômicas

As inversões cromossômicas são de grande interesse na biologia pois estão comumente associadas à origem de inúmeros fenômenos, como organização social, adaptação ambiental, isolamento reprodutivo e até especiação. Duas características fazem delas instrumentos eficazes para adaptação local: envolvem muitos genes e reduzem drasticamente a permutação quando estão em heterozigose. Juntas, essas características produzem um cenário favorável para a disseminação de genes envolvidos na adaptação local em populações naturais.

Por volta de 1915, na famosa sala das moscas da Columbia University, pesquisadores perceberam que alguns estoques de Drosophila melanogaster apresentavam uma taxa de permutação (“crossing-over”) muito menor que a esperada. Alfred Sturtevant propôs que havia fatores supressores da permutação e, por meio de cruzamentos e contagem de mutantes de D. melanogaster, observou que a ordem dos genes nos estoques com diferentes taxas de permutação também era diferente. Essa observação o levou a concluir que os fatores inibidores de permutação eram inversões de regiões dos cromossomos. Foi então levantada uma hipótese para explicar essa observação: a permutação era impedida pois os cromossomos homólogos não poderiam se emparelhar na região invertida durante a meiose. A hipótese foi logo descartada após a observação do emparelhamento (em forma de alça, figura 1) em milho e em cromossomos politênicos de Drosophila. O emparelhamento ocorre e a permutação também ocorre, mas os produtos recombinantes tornam os gametas inviáveis na grande maioria das vezes e, por isso, não são observados indivíduos gerados por esses gametas (figura 1).  

Figura 1. Esquema mostrando os dois tipos de inversão cromossômica, ambas em heterozigose, e os gametas resultantes da permutação. (A) a porção cromossômica invertida pode não incluir o centrômero (inversão paracentromérica). Neste caso, a permutação dá origem a uma cromátide sem centrômero e outra com dois centrômeros. Cromátide sem centrômero não fica ligada às fibras do fuso e não é puxada para os pólos da célula durante a divisão meiótica. Por outro lado, a cromátide com dois centrômeros é puxada para os dois pólos e se rompe. Essas cromátides recombinantes não geram gametas viáveis. (B) Se a inversão inclui o centrômero (inversão pericentromérica), a permutação leva a criação de cromátides recombinantes que ou não possuem todos os genes, ou cromátides com genes duplicados, que por sua vez não formam gametas viáveis. Reproduzido de Moore JA (1986) Science as a Way of Knowing – Genetics. American Zoologist, McLean, 26, 583-747 [texto traduzido e adaptado pelos docentes da disciplina Genética (E.J.C. de Almeida; J.M. Amabis; M.L. Benozzati; B.C. Bitner-Mathé; E.M. Dessen; C.F.M. Menck; L. Mori; C.R. Vilela & Y.Y. Yassuda), do IB-USP, em 1995; revisado em 2021].

 

A supressão da permutação durante a meiose (ou melhor, a supressão da produção de gametas recombinantes) e, consequentemente, do rearranjo de alelos, pode dar origem a supergenes que “prendem” alelos de diferentes genes juntos em grandes regiões cromossômicas. Quando as inversões capturam alelos de diferentes genes que conferem maior aptidão, essas variantes invertidas rapidamente se tornam mais frequentes nas populações. Muitas delas explicam o surgimento de diversos fenótipos, como, por exemplo: diferenças reprodutivas e de comportamento em machos da ave combatente, Philomachus pugnax; coloração e comportamento no pardal-de-garganta-branca, Zonotrichia albicollis; ciclo de vida, morfologia e tempo de floração em Mimulus guttatus; ecologia e morfologia do peixinho esgana-gata, Gasterosteus aculeatus; formas de organização social na formiga-de-fogo, Solenopsis invicta; e resistência a inseticidas em Anopheles arabiensis. Um exemplo de como as inversões facilitaram a disseminação de alelos de resistência a inseticidas foi descrito em mosquitos do gênero Culex.  Os alelos que conferem resistência são deletérios quando estão em homozigose e adaptativos em heterozigose. Esses alelos podem ser potencialmente mantidos em um estado heterozigótico por meio da presença de inversões. Muitas dessas inversões segregam dentro das espécies por centenas de milhares ou mesmo milhões de gerações. Por exemplo, uma inversão de 900 kb no cromossomo 17q21.31 de humanos é observada em europeus e alguns asiáticos (haplótipo H2). Os dois haplótipos, H1 e H2, que divergiram há três milhões de anos, são anteriores ao surgimento do homem moderno e até mesmo à origem do gênero Homo. A explicação mais empregada para a longa retenção de polimorfismos de inversão é a seleção balanceadora.

A espécie de borboleta Heliconius numata tem um dos exemplos mais fascinantes de variação fenotípica associada a inversões. A espécie apresenta sete padrões de asa, mimetizando sete espécies do gênero Melinaea, outro grupo de borboletas, mais tóxicas para seus predadores (figura 2). As sete diferentes formas de H. numata podem aparecer um uma única população. Essas diferentes formas são resultado de vários rearranjos no cromossomo 15. A inversão inicial, denominada supergene P, oferece vantagens por meio do mimetismo e provavelmente entrou na população por meio de hibridação com a espécie Heliconius pardalinus. Após o rearranjo inicial, a região cromossômica não permaneceu estática. Outras duas inversões ocorreram em regiões adjacentes ao supergene P, dando origem a novos haplótipos (alelos de locos adjacentes que são herdados como uma unidade) e novos padrões de asa. A arquitetura do supergene é caracterizada por um bloco não recombinante que captura 21 genes distintos envolvidos no padrão de asa, que são conhecidos por se recombinarem em outras espécies do grupo. Nas espécies relacionadas H. melpomene e H. erato, há vários locos independentes (e em cromossomos distintos) envolvidos no padrão de asa.

Figura 2. Cada uma das formas polimórficas de H. numata mimetiza espécies diferentes do gênero Melinaea (painel superior). Cada forma é controlada por um alelo do supergene P, com dominância crescente mostrada da esquerda para a direita (painel central). Em todas as outras espécies estudadas no gênero Heliconius, o padrão das asas é controlado por vários locos de grande efeito em diferentes cromossomos, a exemplo de H. melpomene, mostrada no painel inferior. Figura reproduzida de Joron et al. (2011).

Mesmo conferindo uma grande vantagem seletiva, o supergene não foi fixado nas populações de H. numata após sua origem e pesquisadores mostraram no inicio deste ano por que isso acontece. O haplótipo seletivamente favorecido (com os alelos adaptativos dos diferentes genes ligados) se espalha pela população, mas, devido à falta de permutação, acumula uma série de mutações com padrão de herança recessiva que diminui a aptidão dos homozigotos (a relação entre a permutação e o acúmulo de mutações foi explorada em um post anterior, aqui no Darwinianas). Dentre as principais mutações observadas pelos pesquisadores, está o acúmulo gradual de elementos transponíveis de diferentes classes. Como consequência, os haplótipos não conseguem atingir a fixação, mas persistem na população, predominantemente em indivíduos heterozigotos.

Para testar o efeito das inversões nas borboletas, os autores analisaram a sobrevivência de larvas de cruzamentos de tipos diferentes sob condições controladas de laboratório. Eles observaram que a sobrevivência de larvas homozigotas para os rearranjos era muito reduzida: apenas 6,2% das larvas homozigota para uma das inversões secundárias e 31,3% homozigotas para a outra inversão secundária sobreviveram até o estágio adulto. Larvas heterozigotas com dois haplótipos diferentes mostraram uma recuperação na aptidão e sua sobrevivência era quase indistinguível daquela de larvas homozigotas para o arranjo ancestral (77,6% de sobrevivência). As inversões, portanto, abrigam variantes recessivas com um forte impacto na sobrevivência individual em homozigotos. Essa descoberta implica que os diferentes haplótipos invertidos não compartilham as mesmas mutações deletérias, mas, em vez disso, rearranjos subsequentes podem compensar as mutações que se acumularam ao longo do tempo. Consequentemente, novos rearranjos (ou eventos raros de recombinação dentro da região invertida) podem estender a vida do haplótipo. A baixa aptidão larval dos homozigotos também sugere que o potencial de qualquer um desses haplótipos se tornarem fixos é bastante baixo. Assim, a seleção é dependente da frequência, beneficiando haplótipos presentes em menor frequência. Como consequência, esse mecanismo garante que as diferentes inversões coexistam ao longo do tempo e também deve estar envolvido na manutenção de supergenes observados em outras espécies, como o pardal-de-garganta-branca e a formiga-de-fogo, mesmo com alta letalidade nos homozigotos.

Tatiana Teixeira Torres (USP)

Para saber mais:

– Mark Kirkpatrick (2010) How and Why Chromosome Inversions Evolve. PLoS Biology, 8, e1000501.

Revisão em inglês sobre processos com papel importante na evolução de inversões cromossômicas.

 – Maren Wellenreuther & Louis Bernatchez (2018) Eco-Evolutionary Genomics of Chromosomal Inversions. Trends in Ecology & Evolution, 33, 427-440.

Outra revisão, também em inglês, os autores trazem estudos recentes em genômica das inversões polimórficas em animais e plantas para detalhar as causas e consequências da persistência de inversões polimórficas na natureza.

 

 

Despedida: Richard Lewontin, sem espaço para a complacência

Desafiar ideias largamente aceitas tira os cientistas de sua zona de conforto, estimula novas ideias, e provoca reflexões sobre o que motiva nossa pesquisa. Richard Lewontin, que faleceu em julho de 2021, não se cansou de lançar desafios.

O que torna um cientista inspirador? Em alguns casos, é seu domínio da técnica e o sucesso em responder questões. Em outros, é a capacidade de comunicar ideias complexas ao público não especializado. Há ainda aqueles que inspiram pela sua conduta e o caráter ético de sua relação com alunos e colegas. Outros nos impressionam pela transparência e clareza de seu posicionamento político. Richard Lewontin incorporava todos esses traços. Ele faleceu no dia 4 de julho deste ano, aos 92 anos, e deixa uma grande lacuna na ciência, e na biologia evolutiva em particular.

Lewontin fez sua graduação em Harvard, e a seguir fez o doutorado, sob orientação do geneticista Theodosius Dobzhansky (1900-1975), na Columbia University. Posteriormente foi professor em três instituições: Carolina do Norte, Chicago, e a partir de 1973 Harvard, onde permaneceu até sua aposentadoria e onde era professor do “Departament of Organismic and Evolutionary Biology”. Ao longo de toda essa jornada, seu interesse era centrado na evolução e na genética de populações.

A genética de populações tem como objeto compreender como ocorre a transformação do conteúdo genético de populações, ao longo do tempo. Essa transformação é um ingrediente chave do estudo da evolução. Na primeira metade do século 20 a genética de populações experimentou um imenso avanço, com o desenvolvimento de uma poderosa teoria matemática para descrever como a seleção natural poderia aumentar a frequência de variantes genéticas vantajosas, e como eventos aleatórios poderiam modificar populações ao longo do tempo. Apesar dos notáveis avanços teóricos, até a década de 1960 havia uma escassez de estudos empíricos sobre como a composição genética de populações mudava ao longo do tempo. Foi de Lewontin o primeiro estudo que quantificou a variação genética em populações naturais e confrontou os achados com as previsões feitas pelos corpos teóricos existentes.

Em seu trabalho com o geneticista John Hubby, em 1966, mostrou que populações naturais de Drosophila melanogaster possuem muito mais variabilidade genética do que aquela esperada pela “teoria clássica” da genética de populações, segundo a qual a maior parte das mutações seria prejudicial, e, portanto, eliminada pela seleção, resultando em populações com pouca variabilidade. Entretanto, a variabilidade observada também superava aquela que poderia ser mantida por seleção natural. Contrapondo-se à “teoria clássica”, havia a “teoria de equilíbrio”, segundo a qual a variabilidade existente em populações era ativamente mantida pela seleção natural, que favoreceria a diversidade genética.

Mas, de acordo com os achados e cálculos de Lewontin e Hubby, a variabilidade era tão elevada que parecia ser inviável invocar a seleção para mantê-la.

Esse resultado e seu impacto na biologia são emblemáticos do trabalho de Lewontin. Ele parecia nutrir um prazer em, a partir da ciência feita com rigor, mostrar a limitação de teorias vigentes. No caso da variabilidade genética, a dificuldade das teorias “clássica” e “de equilíbrio” gerou frutos: dois anos depois, em 1968, Motoo Kimura publicaria o primeiro estudo apresentando a Teoria Neutra da Evolução Molecular, uma solução elegante para a charada apresentada por Lewontin e Hubby. Para Kimura, a mistura de mutações sem efeito sobre a sobrevivência (as chamadas “mutações neutras”) e a deriva genética moldaria a diversidade genética de populações, sem precisar recorrer à seleção. A teoria de Kimura segue sendo alvo de intensos debates nos dias de hoje, e podemos traçar sua origem ao trabalho de Lewontin.

De modo recorrente, o trabalho de Lewontin abordou problemas para as quais parecia haver “soluções simples”, e lançou desafios. Enquanto a maior parte dos pesquisadores de genética de populações estudava os efeitos da seleção sobre genes individuais, Lewontin investiu no estudo da combinação de genes. Ele sugeriu que o cromossomo inteiro era a unidade de seleção. Ou seja, não seriam versões boas de genes que aumentariam de frequência sob seleção, mas cromossomos inteiros, caracterizados pela combinação de mutações que carregavam. Para abordar essa questão, ele introduziu o conceito de “desequilíbrio de ligação”, uma medida que expressava de modo matematicamente rigoroso a associação entre genes. Esses esforços indicavam que a seleção natural é um processo dependente de contexto: a mutação que é vantajosa em um indivíduo pode ser prejudicial em outro. Isso implica que não há variantes “universalmente melhores”, e que o contexto é essencial na genética. As dinâmicas evolutivas resultam de interações, e não de propriedades absolutas.

Lewontin também desafiou a forma tradicional de enxergar adaptações biológicas, segundo a qual a adaptação representa uma “resposta do organismo” a um “problema apresentando pelo ambiente”, criando uma separação que ele julgava artificial. Para Lewontin, não havia “um ambiente lá fora”; pelo contrário, o organismo ativamente construía seu ambiente (através de comportamentos, deslocamentos, interações) e dessa modificação emergiam as pressões seletivas, as quais resultavam em mudanças evolutivas que, por sua vez, poderiam mudar a forma como a espécie interagia com o ambiente.

Essa ênfase sobre interações, seja entre genes ou entre organismo e ambiente, permeiam seu modo de pensar, e também sua visão sobre como cientistas se comportam, sujeitos às pressões do ambiente (social e político) no qual vivem.

Junto com Stephen Jay Gould, em 1979, ele também fez uma crítica à tendência de atribuir à seleção natural o poder de explicar todos os traços que aparentavam ser eficientes para realizar uma função. Num eloquente trabalho, argumentaram que abordagens quantitativas e testes de hipótese seriam necessárias para distinguir entre traços que de fato foram moldados pela seleção e aqueles que apenas parecem ter sido, mas têm sua origem explicada por outros processos. Esse trabalho teve um imenso impacto e ajudou a definir uma agenda mais quantitativa para o estudo da adaptação, que seria desenvolvida nas décadas seguintes.

Lewontin também exercia uma intensa atividade de comunicação com o público não especializado, posicionando-se de modo crítico sobre temas científicos contemporâneos. Divergindo da visão ingênua da ciência como atividade pura, e de cientistas como agentes neutros em busca da verdade, Lewontin trazia o conceito da ideologia para o mundo da ciência. Isso o levou a produzir uma série de ferozes críticas à sociobiologia, campo que desenvolvia modelos sobre como a seleção natural explica comportamentos. Para o biólogo Edward O. Wilson, a pessoa que o havia recrutado para Harvard e o principal nome do campo da sociobiologia, essa nova disciplina iria suplantar a sociologia (e as ciências humanas em geral) a partir do desvendar da genética do comportamento. Nada poderia ser mais antitético às ideias de Lewontin, segundo as quais “o contexto é o que importa”, do que livrar-se da sociologia e buscar nos genes as explicações para nossa organização social. Para Lewontin, a sociobiologia era reducionista ao extremo, pois cristalizava a visão de que genes determinam comportamentos complexos. Ele enxergava uma relação entre tal reducionismo genético e o surgimento de uma “nova direita” na Inglaterra e nos Estados Unidos da década de 1980, para a qual a noção da predestinação das pessoas com base nos genes que elas possuem seria um conveniente argumento para sustentar a desigualdade social, assim como a impossibilidade de combatê-la.

Para Wilson, tais críticas eram indevidas, pois a sociobiologia havia sido desenvolvida sem agenda política. Para Lewontin, por outro lado, a posição de Wilson  era ingênua e ilustrava a relutância de cientistas em compreender que, “quer eles saibam ou não, cientistas sempre tomam posições”. Segundo Lewontin, a noção de Wilson de que havia genes determinando comportamentos e a relutância em enxergar implicações políticas desse pressuposto seriam em si a adoção de uma posição política, que favoreceria políticas conservadoras. Sua crítica ao determinismo biológica foi extensa e ganhou forma no livro “Not in our genes”, em que atacou o uso de testes de QI e a interpretação de que doenças psiquiátricas possuem bases predominantemente genéticas.

Para Lewontin, o posicionamento político explícito não era uma falha, mas uma necessidade. Seu trabalho sobre raças humanas ilustra essa postura: numa análise quantitativa da composição genética de diversas populações humanas, Lewontin mostrou que há uma variabilidade surpreendentemente alta entre indivíduos de uma mesma raça. Mostrou ainda que, contrariamente à intuição de muitos, a diferença genética entre indivíduos de raças diferentes não era muito diferente daquela entre indivíduos da mesma raça. Isso o levou a defender uma rejeição completa do conceito de raça, por ele ser “desprovido de significado biológico” e “destrutivo de relações sociais e humanas”. Esse trabalho teve imenso impacto e reformulou a forma como estudamos, enxergamos e discutimos a variabilidade de nossa espécie até os dias de hoje.

Uma crítica recorrente a Lewontin é a de que suas posições, inclusive as científicas, eram “politicamente motivadas”. É provável que Lewontin não discordasse dessa afirmação, pois ele via tal politização como inevitável, e achava que explicitá-la era a forma mais apropriada de agir. Cada vez mais entendemos que a boa ciência não é aquela livre de valores, mas sim aquela que é transparente quanto a esses valores. A politização certamente moldou a ciência de Lewontin, e talvez ajude a entender alguns dos erros que ele cometeu em sua jornada. No estudo de seleção, hoje julgamos que tratar genes como unidades da seleção é uma estratégia bastante útil (ainda que longe de esgotar a complexidade do processo de seleção natural). Em contraste,  supor que a seleção é um mecanismo que atua sobre cromossomos inteiros, como Lewontin argumentava, parece ser menos justificado. Sua ênfase no contexto no qual operam os genes estava correta, mas o levou à rejeição de um modelo (a de seleção sobre genes individuais) que tinha grande poder explicativo. Sua visão sobre raças humanas revelou-se correta, mas ele errou ao dizer que não há nenhuma informação “taxonômica” nos genes. Hoje sabemos que as sutis diferenças genéticas entre “raças” que ele documentou permitem identificar o local de origem das pessoas, como é rotineiramente feito pelos testes de ancestralidade, tão largamente usados. Sua crítica à Sociobiologia foi um necessário desafio ao determinismo genético, ainda muito presente entre nós. Porém, para muitos, foi feita uma caricatura do que o estudo evolutivo do comportamento pretendia trazer.

“Errar” ou “acertar” é certamente uma distinção importante na vida de um cientista. Porém, para além de seus erros e acertos, um cientista pode também inocular colegas com dúvidas, com questionamento sobre ideias arraigadas; pode trazer métodos rigorosos para se debruçar sobre problema antigos. Um cientista pode jogar luz sobre as pressões políticas que motivam investigações, assim como as implicações políticas dos resultados obtidos. Lewontin foi um cientista assim. O que poderia ser mais inspirador?

Diogo Meyer

Universidade de São Paulo

Para saber mais:

Picolé de pinheiro: Como os pinheiros resistem ao frio intenso?

Cientistas fazem estudo em escala genômica sobre adaptação ao frio entre espécies de pinheiros separadas há mais de 140 milhões de anos

Mesmo em condições ambientais semelhantes, é comum encontrarmos seres vivos muito diferentes, com estruturas que, apesar de distintas em suas origens, cumprem funções similares. Esse processo é conhecido como evolução convergente, ou convergência evolutiva. Em linhas gerais, evolução convergente é o nome dado ao processo que leva à evolução de características fenotípicas distintas que cumprem funções semelhantes em diferentes organismos, sob pressões ambientais semelhantes. São muitos os exemplos de evolução convergente na natureza. Mas um dos exemplos mais fascinantes de convergência evolutiva é a evolução da carnivoria em plantas. Hoje, é amplamente aceito que a capacidade de se alimentar de pequenos animais evoluiu de maneira independente pelo menos cinco vezes ao longo da história das angiospermas, nas ordens Ericales, Lamiales, Oxalidales, Poales e Caryophyllales, totalizando pelo menos 583 espécies de plantas carnívoras. Continue Lendo “Picolé de pinheiro: Como os pinheiros resistem ao frio intenso?”