O que será da ciência sem o seu chão de fábrica?

Todo ano, programas de pós-graduação do Brasil repetem uma tarefa recompensadora: a seleção de uma tese de doutorado que representará o seu programa no prêmio CAPES de tese. No programa de Pós-graduação em Ciências Biológicas (Biologia Genética) do Instituto de Biologia da USP, três teses defendidas em 2019 cativaram a comissão de seleção. Uma das teses descreve o uso do vírus Zika para o desenvolvimento de um tratamento para tumores embrionários do sistema nervoso central, a principal causa de morte relacionada ao câncer infantil. Outra tese mostra o processo de produção em laboratório de fígados humanos funcionais usando bioimpressão em três dimensões e células tronco como uma alternativa para pacientes em fila de espera de transplante de fígado. Uma terceira tese mostra como efeitos genéticos interagem para formar um padrão de variação de características complexas e como esse padrão evolui sob seleção. Essas três teses são uma pequena amostra das milhares que foram defendidas em todo o país apenas no ano de 2019. São pesquisas desenvolvidas por estudantes de pós-graduação durante sua formação, e que podem contribuir para a construção do conhecimento científico (pesquisa básica), mas também permitem o desenvolvimento de tecnologias na indústria, melhoria da saúde e bem-estar, e criação de políticas públicas.

O Brasil ocupa o 13º lugar no mundo em termos de produção de artigos científicos. Somente em 2018, pesquisadores brasileiros publicaram mais de 50.000 artigos, como descrito em um relatório da empresa Clarivate Analytics encomendado pela Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). Esse mesmo relatório revela que as universidades públicas são a principal fonte de publicações de pesquisas no Brasil. As 15 universidades com maior produção de pesquisa, todas públicas, produzem mais de 60% da produção total de pesquisa nacional. Estima-se que 80% dessa produção é realizada no contexto dos programas de pós-graduação. O protagonismo do país na produção científica em diversas áreas se deve em grande parte aos esforços dos alunos de mestrado e doutorado. Mesmo tendo papel essencial para o desenvolvimento científico, está cada vez mais difícil atrair e manter os estudantes em sua vocação.

Os estudantes que desenvolvem os projetos científicos estão matriculados em cursos de Pós-graduação Stricto Sensu, que compreende os cursos de mestrado e de doutorado. Durante o curso de mestrado ou de doutorado, os estudantes cursam disciplinas, mas passam a maior parte do tempo (24 a 36 meses para mestrado e 48 a 60 meses para o doutorado) desenvolvendo seu projeto de Dissertação ou Tese. As exigências dos cursos raramente permitem um vínculo empregatício e a única fonte de renda da maioria dos estudantes é a bolsa de estudos concedida por uma agência de fomento à ciência, a qual não pode ser acumulada com a maioria das atividades com remuneração. Em um post anterior aqui no Darwinianas comentei sobre as diferentes agências de fomento à pesquisa atuantes no Brasil. No Brasil, a CAPES e o Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) são os principais financiadores de bolsas de pós-graduação. Um estudante em um curso de mestrado pode receber recebe R$ 1.500,00 da CAPES ou do CNPq e um estudante matriculado em um curso de Doutorado uma bolsa de R$ 2.200,00. O último reajuste no valor dessas bolsas ocorreu em 1º de abril de 2013. Em sete anos não houve sequer correção da inflação. Como não tem vinculo empregatício, o estudante não tem direito a férias remuneradas, 13º salário, seguro saúde, ou fundo de garantia. Como se já não bastasse o baixo valor das bolsas e o trabalho precário, há um grande contingente de estudantes cursando a pós-graduação, realizando pesquisa, porém sem receber bolsa. Infelizmente, esse número de pós-graduandos que não são pagos só tem aumentando nos últimos anos. Usufruir de uma bolsa enquanto trabalha para ciência e geração de riquezas para o país está se tornando exceção para o chão de fábrica da ciência.

Até 2015, o número de bolsas de pós-graduação vinha aumentando gradualmente. Em 2005, mais de 27 mil estudantes foram contemplados com bolsas da CAPES (dados do GEOCAPES). Em 2015, mais de 92 mil estudantes recebiam bolsas. Mesmo com o aumento, ainda havia um grande déficit de estudantes atendidos pela CAPES, mesmo com as bolsas oferecidas pelo CNPq e pelas agências estaduais. Em seu auge, o CNPq oferecia 38.339 bolsas. De 2015 para cá, a redução do investimento em ciência assusta os cientistas em formação e seus supervisores. Desde 2019, os cortes de bolsa resultantes de mudanças de regra de distribuição se tornaram comuns. Em 9 de maio de 2019, 3.474 bolsas foram “contingenciadas” e pouco tempo depois, em 4 de junho, mais 2.724 bolsas foram bloqueadas. Em 2 de setembro, outras 5.613 bolsas foram congeladas. Ainda em setembro, houve a devolução de 3.182 dessas bolsas para cursos mais bem avaliados, sem recuperar o número de bolsas do ano anterior (92.008 bolsas). As bolsas cortadas pertenciam a estudantes que haviam terminado seus cursos e seriam destinadas àqueles em espera ou que haviam ingressado nos processos seletivos.

Essas mudanças não foram discutidas com a comunidade acadêmica e foram divulgadas sem anúncio prévio, não dando sequer espaço para planejamento de coordenadores de programa, orientadores e estudantes. Programas com processos seletivos que contavam com bolsas disponíveis para os ingressantes se viram com listas de espera por bolsas que talvez nunca cheguem. Estudantes que se deslocaram de suas cidades para realizar sua matrícula e iniciar seu curso descobriram apenas em seu destino que a sua bolsa já não existia mais. Em março de 2020, foram publicadas novas portarias da CAPES, alterando os critérios de distribuição de bolsas para programas de pós-graduação. Mais uma vez, a portaria impactou a pesquisa em diversas áreas do conhecimento, incluindo  pesquisas  para o enfrentamento da covid-19. Em julho, foi a vez do CNPq anunciar uma mudança drástica na forma de distribuição de bolsas. Mais uma vez, a mudança inesperada com prazo exíguo para apresentação de propostas e sem critérios claros, preocupou a toda comunidade. A chamada de propostas foi alterada, mas ainda não se sabe qual será a extensão do corte de bolsas decorrente da chamada. Em 2017, o número de bolsas de pós-graduação financiadas pelo CNPq já havia caído para 17.256.

As agências de fomento estaduais que contribuem com uma pequena parcela de bolsas, também correm risco. Em São Paulo, por exemplo, um projeto de lei, PL 529/20, tramita na assembleia legislativa do estado. Em seu artigo 14, o projeto prevê a retirada de recursos das universidades estaduais e da FAPESP, alegando ser um saldo não utilizado. Porém, esse valor tratado como se fosse uma “sobra” é um recurso com destino planejado para a FAPESP e as universidades estaduais. Não é uma sobra. O projeto pune a boa gestão dos investimentos públicos e, caso aprovado sem alterações, terá um impacto desastroso na pesquisa e na pós-graduação nas universidades públicas paulistas.

Todos os ataques sofridos pela pós-graduação e sentidos pelos pós-graduandos em sua renda — fundamental para a realização de suas pesquisas— têm pouca repercussão na popularidade dos governos que as implementam. Os resultados dessas pesquisas chegam à sociedade em longo prazo. Certamente poucos cidadãos estão cientes do papel dos pós-graduandos na geração de conhecimentos e riquezas para o país. Poucos sabem do papel deles no desenvolvimento diagnósticos e tratamentos de doenças, nas alternativas para transplante de órgãos e na investigação dos processos evolutivos que atuam sobre os organismos. Poucos sabem do papel dos estudantes no enfrentamento da Covid-19, em pesquisas que visam, por exemplo, o desenvolvimento de novos testes para diagnóstico da doença, a criação de aplicativo para identificar sintomas, criação de  mapa interativo para monitorar casos da doença, mitigar transtornos de humor e sedentarismo durante o isolamento social e no desenvolvimento de produtos para reduzir a transmissão do coronavírus.

A médio/longo prazo, os projetos realizados por estudantes bolsistas retornam à sociedade. Os cortes nas bolsas representam o encerramento de projetos como esses e a interrupção da formação dos recursos humanos em ciência. Deixaremos de formar futuros cientistas do país. Futuros professores que cumpririam o papel de formação de novos núcleos de pesquisa. Futuros cientistas que priorizariam os interesses de sua comunidade em sua pesquisa. Os cortes terão impacto negativo duradouro para a toda comunidade cientifica já fragilizada com os cortes acumulados. Devemos apoiar os estudantes e suas iniciativas para a defesa da pós-graduação e lutar para preservação do orçamento em ensino e ciência, defendendo os interesses de nosso país. O ataque aos alunos é um ataque à própria ciência.

Tatiana Teixeira Torres (USP)

Para saber mais:

– Herton Escobar (2019) 15 universidades públicas produzem 60% da ciência brasileira. Jornal da USP, 05/09/2019.

Matéria que descreve o levantamento da empresa Clarivate Analytics sobre produção científica encomendado pela CAPES. A matéria ressalta que 15 universidades, todas elas públicas, produzem mais da metade da ciência brasileira.

– Herton Escobar (2020) Mudanças no CNPq e Capes preocupam pós-graduação da USP. Jornal da USP, 31/07/2020.

Matéria publicada no Jornal da USP, explicando as alterações nas regras para concessão de bolsas e recursos das principais agências de fomento à pesquisa do governo federal, a CAPES e o CNPq.

Biblioteca Digital de Teses e Dissertações da USP

Repositório de Teses e Dissertações defendidas na Universidade de São Paulo. O banco de dados público contém mais de 90 mil documentos, sendo 54244 Teses, 37832 Dissertações e 676 Teses de Livre Docência.

IMUNIDADE COLETIVA AO SARS-CoV-2

Até que haja uma vacina eficaz, os níveis de imunidade não serão altos o suficiente para atingir o que é chamado de imunidade coletiva à COVID-19. Esse é o ponto em que a doença começa a se extinguir, porque um número suficiente de pessoas está imunes e a transmissão acaba.

Surtos, epidemias e pandemias surgem quando um agente causador de uma doença infecciosa começa a circular dentro de uma população suscetível. A diminuição no aparecimento de novos casos acontece quando pessoas recém-infectadas passam a transmitir a infecção  para menos  uma pessoa suscetível dentro da população. Para essa quantidade de pessoas suscetíveis diminuir, é preciso que boa parte da população esteja imune ao patógeno causador dessa doença.

Apesar de haver vários fatores que contribuem para que uma doença infecciosa pare de ser transmitida, o caso citado acima é conhecido na área de imunologia como “imunidade coletiva”, ou “imunidade de rebanho”. A imunidade coletiva ocorre quando uma grande parte da comunidade se torna imune a uma doença, tornando improvável a transmissão de pessoa para pessoa. Como resultado, toda a comunidade fica protegida – mesmo aqueles que não foram infectados. Para que uma doença infecciosa se espalhe, é preciso que uma porcentagem da população seja infectada. Se a proporção de pessoas imunes à doença for suficientemente alta, a propagação da doença diminuirá. Isso é conhecido como limite de imunidade do rebanho.

O exemplo da infecção pelo sarampo ilustra como a imunidade coletiva funciona, pois é um vírus com alta capacidade de infecção, ou seja, cada pessoa infectada consegue transmitir o vírus para até 18 pessoas. Quando a quantidade de casos diminui, é possível inferir que a população está gradativamente ficando imune, seja pela vacinação, seja pela infecção natural. Na epidemiologia, um parâmetro muito importante é o R0, a taxa que mede a capacidade de transmissão de uma pessoa infectada. O SARS-CoV-2 possui um R0 de 2,5, ou seja, cada pessoa infectada consegue transmitir o vírus para no mínimo 2 e no máximo 3 pessoas. Essa taxa determina a proporção limite da imunidade coletiva da população, uma vez que, quanto maior a capacidade de infecção do vírus, maior a quantidade de pessoas imunes que a população precisa ter para impedir a circulação desse vírus.

Que porcentagem de uma população precisa ser imune para haver imunidade coletiva?

A resposta para essa questão varia de doença para doença. Por exemplo, se 80% da população é imune a um vírus, quatro em cada cinco pessoas que encontrarem alguém com a doença não ficarão doentes (e não espalharão a doença mais). Dessa forma, a propagação de doenças infecciosas é mantida sob controle. Dependendo de quão contagiosa é uma infecção, geralmente 70% a 90% da população precisa de imunidade para que seja obtida imunidade coletiva. Para o sarampo, este limite é perto de 95%, o que significa que 95 em cada 100 pessoas precisam estar imunes ao sarampo, para que as 5 que não possuem imunidade ao vírus estejam protegidas. Já para o SARS-CoV-2, a proporção limite foi proposta como sendo entre 60 e 80%.

Quanto mais contagiosa for uma doença, maior será a proporção da população que precisa ser imune para impedir sua propagação. Esse efeito pode ser visto em simulações, como a do  grupo de pesquisadores da Sociedade de Medicina da Filadélfia, que permite visualizar cenários onde uma população desenvolve a imunidade coletiva a uma doença infecciosa com sucesso (acesse as simulações aqui).

Na figura abaixo, que apresenta os casos de sarampo divulgados pela Agência de Proteção à do Reino Unido (Health Protection Agency ) desde 1940, é possível ver que, apesar de baixos, os números de casos aumentam e diminuem periodicamente, mostrando que o vírus continua circulando em populações. É o que acontece, por exemplo, na população brasileira. Os aumentos periódicos podem ter duas explicações. Primeiro, a população de suscetíveis está aumentando, ou seja, a proporção limite para que a imunidade coletiva aconteça é muito baixa, expondo a população que ainda não tem imunidade contra o vírus. Por outro lado, a cobertura vacinal passou a ter um papel importante a partir de 1968, quando a vacina foi licenciada, resultando numa diminuição grande nos casos. Contudo, ainda há uma persistência, que pode ser explicada com o aumento da população em geral e o tempo até as crianças serem vacinadas. Hoje, no Brasil, a recomendação do calendário de imunizações é a aplicação da primeira dose entre 0 e 3 meses de idade.

Health Protection Agency – UK

Podemos prever quando conseguiremos a imunidade coletiva para a COVID-19?

Existem dois caminhos para a imunidade coletiva para a COVID-19: pela imunização com as vacinas, ou pela infecção natural da população, e o consequente desenvolvimento de imunidade pelo próprio indivíduo.

A vacina para o vírus que causa a COVID-19 seria o caminho ideal para obter imunidade coletiva. As vacinas induzem o desenvolvimento de imunidade de modo seguro para a população, ainda que a estratégia de buscar a imunidade coletiva por meio da vacinação às vezes apresente desvantagens. Por exemplo, a proteção de algumas vacinas pode diminuir com o tempo, exigindo revacinação. Além disso, às vezes as pessoas não tomam todas as vacinas que estão disponíveis e recomendadas pelo calendário oficial.

Se a proporção de pessoas vacinadas em uma comunidade cair abaixo da proporção limite de imunidade coletiva, a exposição ao patógeno pode resultar na disseminação rápida da doença. O sarampo ressurgiu recentemente em várias partes do mundo, devido a taxas de vacinação relativamente baixas, incluindo os Estados Unidos e o Brasil. A oposição às vacinas pode representar um verdadeiro desafio para a imunidade coletiva, tão custosamente construída, com campanhas de vacinação anteriores.

A imunidade coletiva também pode ser alcançada quando há um número suficiente de pessoas recuperadas e imunes contra infecções futuras. Por exemplo, aqueles que sobreviveram à pandemia de Influenza (gripe espanhola) de 1918 se tornaram imunes à infecção com a gripe H1N1, um subtipo do vírus Influenza A.

No entanto, existem alguns problemas importantes em depender da infecção da comunidade para criar imunidade coletiva ao vírus que causa COVID-19. Primeiro, ainda não está claro se a infecção pelo vírus COVID-19 torna uma pessoa imune a infecções futuras. Até agora o que sabemos é que há uma resposta imune composta por linfócitos T CD4+, CD8+, células NK e anticorpos, mas ainda precisamos de mais tempo para entender melhor se a imunidade natural e a imunidade induzida pela vacina são suficientes para proteger a população.

Mesmo que a infecção com o vírus COVID-19 crie imunidade duradoura, um grande número de pessoas teria que ser infectado para atingir o limite de imunidade de rebanho. Especialistas estimam que, nos EUA, 70% da população – mais de 200 milhões de pessoas – teriam que se recuperar do COVID-19 para conter a epidemia. Se muitas pessoas ficarem doentes com COVID-19 ao mesmo tempo, o sistema de saúde pode ficar sobrecarregado rapidamente resultando em milhões de mortes.

Apesar de ser a melhor saída, sabemos que há uma movimentação de algumas partes da população em recusar a imunização pelas vacinas. Em 1998, um pesquisador afirmou que a vacina contra o sarampo aumenta a incidência de autismo em crianças. Os pais expressaram suas preocupações e a mídia divulgou amplamente esta declaração. Após muitos estudos, a Organização Mundial da Saúde concluiu que não existia nenhuma evidência de uma associação causal entre a vacina e transtornos autistas, apesar de parte da população ainda usar este argumento para não seguir o calendário de vacinação proposto pelo Programa Nacional de Imunizações (PNI) (acesse a posição da OMS sobre o trabalho de 1998).

A melhor maneira de obter imunidade coletiva sem perda de vidas é com uma vacina que seja altamente eficaz e administrada para a grande maioria dos indivíduos, de modo que todas as regiões tenham pelo menos 60%-70% da população imunizada. Embora tenhamos várias vacinas candidatas em testes clínicos em estágio final, sabemos que as vacinas são difíceis de se produzir, mas são a nossa melhor chance de proteger a população.

Thais Boccia

Bióloga, mestre e doutora em imunologia pelo Instituto de Ciências Biomédicas da Universidade de São Paulo

Para saber mais:

Metcalf CJE, et al. Understanding herd immunity. Trends in Immunology. 2015; doi:10.1016/j.it.2015.10.004.

Fox JP. Herd immunity and measles. Rev Infect Dis. 1983;5(3):463-466. doi:10.1093/clinids/5.3.463

https://www.historyofvaccines.org/content/herd-immunity-0

https://www.cdc.gov/globalhealth/measles/globalmeaslesoutbreaks.htm

https://www.gov.uk/government/publications/measles-deaths-by-age-group-from-1980-to-2013-ons-data/measles-notifications-and-deaths-in-england-and-wales-1940-to-2013

https://vaccine-safety-training.org/mmr-vaccine-increases.html

Guerra FM, Bolotin S, Lim G, et al. The basic reproduction number (R0) of measles: a systematic review. The Lancet. Infectious Diseases. 2017 Dec;17(12):e420-e428. DOI: 10.1016/s1473-3099(17)30307-9.

Bartsch SM, O’Shea KJ, Ferguson MC, et al. Vaccine Efficacy Needed for a COVID-19 Coronavirus Vaccine to Prevent or Stop an Epidemic as the Sole Intervention [published online ahead of print, 2020 Jul 15]. Am J Prev Med. 2020;S0749-3797(20)30284-1. doi:10.1016/j.amepre.2020.06.011

García LF. Immune Response, Inflammation, and the Clinical Spectrum of COVID-19. Front Immunol. 2020;11:1441. Published 2020 Jun 16. doi:10.3389/fimmu.2020.01441

Long QX, Tang XJ, Shi QL, et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med. 2020;26(8):1200-1204. doi:10.1038/s41591-020-0965-6

Kwok KO, et al. Herd immunity — Estimating the level required to halt the COVID-19 epidemics in affected countries. Journal of Infection. 2020; doi:10.1016/j.jinf.2020.03.027.

Operárias pós pandemia

O fungo induz a formiga a espalhar ainda mais os esporos do próprio fungo. Nossas redes sociais virtuais podem também nos fazer espalhar ainda mais nossa pandemia.

Às vezes o fragmento revela o todo, às vezes a vida de uma vila se revela universal. Muitos escritores escrevem sobre o seu entorno, seus relacionamentos, seu bairro, sua cidade. Machado de Assis nunca saiu do Rio de Janeiro, e no entanto seus personagens cariocas tocam a todo um mundo, traduzidos em outros tempos e cidades. Também a ciência pode assim ser versada em muitas línguas. Às vezes um olhar para o mínimo permite desvendar o máximo quando, por exemplo, conseguimos captar no que é ínfimo regras gerais de uma organização que se espelha em muitas escalas deste nosso mundo, que valem tanto para os formigueiros quanto para megalópoles humanas.

Viver em sociedade é um convite aos parasitas. Muitos corpos um ao lado do outro, é uma oportunidade imperdível para parasitas se espalharem, contaminando um a um, a dois, a três … milhões no Brasil, hoje. Mas sociedades de formigas enfrentam pandemias com muito mais galhardia que nossa desumana sociedade. Formigas constróem moradas escuras e úmidas, e muitas vezes levam folhas e cadáveres de insetos para dentro de suas casas, convidando assim fungos, bactérias e inúmeras viroses para o interior de sua intimidade. Como sobreviver a esta promiscuidade com o perigo? Como evitar que uma formiga operária adoentada infecte toda a colônia, sem ter hospitais ou leitos de UTI? Como evitar que a desinformação se espalhe criando um pandemônio em meio a uma pandemia? Talvez as formigas tenham algo a nos ensinar lá do fundo de sua aparente simplicidade. Talvez suas atitudes minúsculas possam nos ajudar a fazer a diferença, nesta estranha época em que tudo parece ser sempre muito mais de um imenso mesmo.

Indivíduos simples para uma sociedade complexa?

Do alto (ou de baixo) de seus pequenos cérebros, formigas não se furtam a produzir uma sociedade complexa, com castas especializadas em separados labores, uma realeza amparada por uma aristocracia em vários tons de cinza, campos de cultivo separados de lixões e de berçários e de áreas de processamento e transporte, uma sofisticada rede de contatos informando decisões que se alteram conforme a necessidade de um todo que nenhum pequeno cérebro individual conhece em sua inteireza. E formigas estão longe de ser mini-robôs que seguem algumas poucas simples regras das quais emerge, como num passe de mágica, um complexo sistema social. Não: do alto de seus pequenos cérebros formigas individuais aprendem com seus erros, corrigem ao longo de suas vidas suas decisões, mudam de profissão (função), optam às vezes por seguir a boiada, às vezes por liderá-la, espalhando cheiros ora convidativos, ora repugnantes, banhos de essências comunicativas sobre seu corpo, sobre suas trilhas, guiando-se ora por dicas visuais, ora pela memória dos caminhos já percorridos, seguindo os outros apenas após avaliá-los com contatos comunicativos de suas antenas, enfim, não estamos falando aqui de maquinetas simplificadas, mas sim de organismos inteiros, complexos, que sabem quem é de seu formigueiro e quem é forasteiro, sujeitos com história de vida pessoal e coletiva. Daí que não se avexem, leitores, ao serem comparados com uma formiga. Conheço muita gente boa que encararia essa comparação como um grande elogio.

Sociedades humanas e sociedades de insetos dependem de um complexo e coordenado sistema de infraestruturas, tais como redes de comunicação, de suprimentos, e de transporte. Não somos só nós que podemos ter barragens de detritos tóxicos implodindo cidades a jusante, derramamentos de petróleo eliminando culturas e comunidades de pescadores, pandemias colapsando o sistema de saúde, ou queimadas destruindo o futuro de uma nação, com o incentivo criminoso de Ricardo Salles (que apesar disso tudo ainda se considera ministro do meio ambiente). Como os nossos, os sistemas das formigas podem entrar em colapso, fruto de desastres naturais, flutuação na oferta de suprimentos, irrupção de doenças e perda de indivíduos chave. Talvez em mais uma semelhança, desta vez com a sociedade brasileira em particular, não há entre as formigas um planejamento deliberado ou um sistema centralizado de controle. Com o crescimento descontrolado da população, os sistemas de infraestrutura humanos estão, no geral, tornando-se decentralizados e interconectados, como o dos insetos sociais. Isto torna os insetos sociais um bom modelo para o estudo das redes de infraestrutura humanas, por exemplo, para promover um bom funcionamento das redes hospitalares, das redes de transporte de cargas, ou das redes de colaboração entre instituições de pesquisa. De forma mais direta, podemos estudar o espalhamento de epidemias em várias espécies de insetos sociais, utilizando os resultados como um banco de testes que nos permita prever o espalhamento de epidemias em várias condições diferentes. Isto certamente nos deixaria mais preparados para nosso nebuloso futuro de pandemias em série.

Algumas espécies de formigas constróem ninhos com uma intrincada rede subterrânea, e este alto investimento no ninho requer consequentemente a construção de paredes reforçadas para o exterior, de modo a garantir seu investimento na infraestrutura do ninho, resistindo a ataques e perturbações externas. Outras espécies não investem muito no ninho, e optam, frente a um ataque, por uma fuga coordenada e rápida, redirecionando seus investimentos para outro local. No geral, há três estratégias para uma boa resiliência em insetos sociais: resistência (como no primeiro exemplo acima), redirecionamento (como no segundo exemplo), e reconstrução (quando a resistência é rompida e um novo ninho tem que ser reconstruído do zero). Espécies diferentes se especializam em estratégias distintas, e estudar a diversidade de espécies nos ajuda a entender que opções mais estariam no menu de estratégias resilientes, que condições tornam uma ou outra opção mais atraente. Certamente estamos precisando ampliar nosso leque de opções para a construção de, entre outras coisas, uma rede de instituições hospitalares, um sistema de saúde que não colapse facilmente frente a sucessivas ondas de epidemias, ou pandemias, ou pandemônios.

Com relação à estrutura social, quanto menor o grupo de insetos sociais, mais todos se relacionam com todos, de modo que em pequenas sociedades é mais provável que todos compartilhem um mesmo conjunto de saberes. Por outro lado, quanto maior o grupo, mais subgrupos temos nos insetos, ou seja, mais modularizada é a rede de interações sociais (maior o número de panelinhas de amigos), dando oportunidade para o surgimento de grupos especializados em determinados tipos de informação, ou fofoca, ou trabalho, e fazendo surgir também indivíduos chave para o grupo, indivíduos que conectam as panelinhas de amigos entre si, pessoas populares que conectam várias bolhas nas redes sociais. No entanto, diferentemente do que ocorre em nossas redes virtuais de relações sociais, as redes biológicas de interação no mundo concreto não comportam indivíduos hiperconectados: não há um Felipe Neto ou um Carlos Bolsonaro entre as formigas, mesmo havendo formigueiros com mais indivíduos que a maior das megalópoles humanas. Parece haver limites para as interações concretas, limites que nossas redes sociais virtuais permitiram suplantar: alcançamos recentemente uma nova escala de conectividade social.

Medicina social

Andamos nestes últimos tempos embrenhados por demais no individualismo. Temos uma dificuldade muito grande em entender que não sou eu que estou em risco ao sair por aí sem máscara. Não nos vemos como um elo, ou uma parte, de um todo maior, cada um focado no seu aqui, no seu agora. Talvez no Brasil isto seja particularmente difícil: para uma sociedade com origens múltiplas, negros de muitas etnias, diversas nações indígenas, brancos e amarelos de muitos e distintos mundos, é sempre mais difícil criar uma identidade vivendo um caleidoscópio. Sem identidade, nos resta a solidariedade com o diferente, mas este é um sentimento menos potente, não sei se capaz de fazer a unidade. É uma tarefa em aberto a construção de uma identidade brasileira, uma vontade de defender o outro como a nós mesmos, como se o ataque ao outro abrisse uma ferida em nossa própria e brasileira carne. Formigas são um só corpo (talvez não sejam uma só mente), mas como diziam acima meus bons amigos, é até covardia comparar-nos a estas sociedades maravilhosas.

Insetos sociais possuem estratégias variadas de defesa contra parasitas. Formigas usam antibióticos, produzidos por bactérias que vivem em sua cutícula, para controlar parasitas que atacam suas fazendas de fungos. Já cupins podem diretamente secretar antibióticos que inibem a germinação de fungos.

Cupins doentes, parasitados por fungos, ao entrar no cupinzeiro levam os cupins a se limpar uns aos outros, reduzindo a taxa de contágio, e aumentando a sobrevivência dos contaminados. Já formigas, ao limparem seus colegas, transferem a seus parceiros pequenas quantidades de patógenos, que serviriam como mini-vacinas, ao estimular o sistema imune do parceiro com doses não letais destes patógenos. Em outros casos, uma maior imunização estava associada a um aumento da trofalaxe, um comportamento no qual uma formiga regurgita alimento para a outra. Esta troca íntima de líquidos corporais poderia espalhar na colônia a capacidade de combater parasitas.

Assim, para além da auto-medicação individual, insetos sociais têm estratégias coletivas que reduzem a disseminação de doenças. Uma outra estratégia coletiva é a divisão de trabalho estrita: operárias que se especializam no processamento de material contaminado (operam lixões com resíduos tóxicos) dificilmente entram em contato com outras operárias da colônia, havendo desta forma um efetivo isolamento dos lixões, cheios que estão de contaminantes que poderiam prejudicar as fazendas de fungos.

Um outro exemplo fascinante é o uso de resina de coníferas (araucárias, pinheiros) por formigas. Há tempos se sabe que algumas espécies carregam gotas de resina para dentro dos formigueiros, mas apenas recentemente descobriu-se que tais resinas contêm substâncias que inibem o crescimento e a multiplicação de bactérias e fungos parasitas, servindo desta forma como um medicamento coletado coletivamente para a defesa da colônia.

Considerando que insetos sociais têm uma casta reprodutiva, eles têm uma barreira óbvia para a transmissão de parasitas entre gerações. Se uma operária estiver doente, esta doença pode não chegar à rainha e às câmaras onde estão as larvas das próximas rainhas e reis. A rainhas e a futura realeza são cuidados apenas por operárias jovens que não saem do ninho, sendo assim pouco expostas a doenças. Assim, uma colônia parasitada pode evitar a transmissão do parasita para suas colônias filhas, ao proteger de doenças suas castas reprodutivas.

Chegando ao correlato mais direto com nossa pandemia atual, pesquisadores simularam uma epidemia em colônias de formigas. Injetaram fungos mortíferos em formigas, e seguiram seu comportamento ao entrar no formigueiro. O resultado foi surpreendente: imediatamente houve um maior distanciamento social nos formigueiros infectados, quando comparados aos formigueiros controle (não infectados). A infecção fez com que as redes de interação social ficassem mais modularizadas, ou seja, com um maior número de panelinhas de amigos isoladas umas das outras. Este maior isolamento, em consequência, reduziu a velocidade de espalhamento da infecção.

Guerrilhas sociais

A pergunta que salta aos olhos é: como é que somos incapazes de fazer o que até mesmo ‘simples’ formigas fazem facilmente? Uma resposta: porque somos muito complicados. A rede de interações entre os insetos sociais não permite o surgimento de Carlos Bolsonaros da vida: como vimos, não há formigas hiperconectadas, não há abelhas super populares, não há cupins que tenham contato com a maior parte do cupinzeiro. Mas nossas redes sociais não têm limites para o número de contatos que uma pessoa pode ter. Pessoas hiper-conectadas, os tais influenciadores digitais, podem rapidamente contaminar uma sociedade com informação, ou com desinformação. Embora os vírus reais (o coronavírus, entre outros) se espalhem através de um contato mais próximo entre os indivíduos, a guerra de desinformação se espalha muito mais rapidamente, preparando o terreno para o espalhamento das viroses reais. Recentemente um estudo mostrou que cidades nas quais Bolsonaro teve maior votação na eleição presidencial são também cidades em que a taxa de mortalidade da COVID é maior. As guerras de desinformação têm preparado o terreno para uma maior letalidade do coronavírus.

Somos complicados, e isto é um problema. Agora que entramos em uma nova escala de socialidade, com redes sociais de pessoas hiper-conectadas, vamos nos dispor a desbravar este vasto novo mundo social que criamos, ou ficaremos à mercê dos interesses de grandes conglomerados digitais, como Facebook, Instagram, TikTok, WhatsApp, entre outras redes sociais que venham a surgir? Não podemos deixar que grandes conglomerados digitais funcionem como aqueles parasitas que controlam o comportamento de seu hospedeiro. Não podemos ser reféns dos algoritmos das redes sociais, planejados para que não desliguemos o celular, nunca.

Recentemente grandes empresas têm retirado seus anúncios do Facebook, pressionando assim para uma redução dos discursos incendiários e de polarização social que, literalmente, alimenta as redes sociais virtuais, dando-lhes um público cativo que quer ver o circo pegar fogo. O judiciário brasileiro está investigando gabinetes de ódio espumante. Para um novo problema, basta uma nova solução, e uma guerrilha contra a desinformação está em curso no Brasil, neste exato momento. Participe.

Hilton Japyassú

Para saber mais

Christe, P., Oppliger, A., Bancalà, F., Castella, G., & Chapuisat, M. (2003). Evidence for collective medication in ants. Ecology Letters, 6(1), 19-22.

Cremer, S. (2019). Social immunity in insects. Current Biology, 29(11), R458-R463.

Middleton, E. J., & Latty, T. (2016). Resilience in social insect infrastructure systems. Journal of The Royal Society Interface, 13(116), 20151022.

Naug, D. Structure and resilience of the social network in an insect colony as a function of colony size. Behav Ecol Sociobiol 63, 1023–1028 (2009). https://doi.org/10.1007/s00265-009-0721-x

Stroeymeyt, N., Grasse, A. V., Crespi, A., Mersch, D. P., Cremer, S., & Keller, L. (2018). Social network plasticity decreases disease transmission in a eusocial insect. Science, 362(6417), 941-945.

Genocídio indígena na era da COVID-19

O aumento das práticas ilegais de garimpo e desmatamento em meio à pandemia agravam a vulnerabilidade epidemiológica dos povos indígenas, podendo ocasionar o extermínio de diversas etnias.

Desde o momento em que invadiram a América, os europeus contaminaram os nativos americanos, causando a morte de centenas de milhares de indígenas por doenças como varíola, cólera, sarampo e gripe. Essas doenças, por serem endêmicas de outros continentes, não estavam presentes na América até sua invasão. Assim, diferentemente dos europeus, que desenvolviam imunidade para essas doenças através da exposição a elas desde a infância, os nativos americanos eram extremamente vulneráveis às mesmas. De acordo com o biólogo Jared Diamond, no livro ganhador do prêmio Pulitzer Armas, germes e aço, a morte dos nativos americanos por doenças excedeu em muito o número de mortes por batalhas e assassinatos – embora estas também não possam ser menosprezadas. Logo, a chegada e as explorações territoriais dos europeus foram responsáveis por inúmeras epidemias, causando a morte de milhares de indígenas e o extermínio de diversas culturas. Continue Lendo “Genocídio indígena na era da COVID-19”

%d blogueiros gostam disto: