É muito tentador pensar na natureza como um lugar idílico, um paraíso onde as plantas e os animais vivem em constante harmonia. Sem dúvidas, a beleza do mundo natural é encantadora e não pretendo aqui argumentar o contrário. Mas, desde Darwin, a ideia de que os organismos vivos estão em constante luta pela sobrevivência, na qual apenas os mais aptos sobreviverão, ou seja, aqueles mais capazes de obter recursos para sua manutenção, se tornou um conceito central no pensamento biológico, e essa noção está na base de um dos mais importantes mecanismos evolutivos, a seleção natural. E quanto mais estudamos o mundo natural, mais nos damos conta de que muito do que achamos fascinante evoluiu em contextos de predação, defesa ou competição. E um desses fenômenos é a evolução da peçonha.
A utilização de peçonha para defesa, competição ou predação é usualmente associada a insetos (como abelhas e vespas), a aracnídeos (como aranhas e escorpiões), ou a répteis (como as cobras). Diferentemente dos animais venenosos, que apenas produzem ou acumulam toxinas, animais peçonhentos possuem também um mecanismo ativo de liberação ou inoculação do veneno. Com poucas exceções, como as aves, exemplos de animais peçonhentos são encontrados em praticamente todos os grupos animais, até mesmo dentre os mamíferos (consulte aqui o Guia de Bolso dos animais peçonhentos do Brasil). Talvez o exemplo de mamífero peçonhento mais conhecido seja o ornitorrinco, espécie na qual os machos possuem, nas patas posteriores, esporões com veneno que são utilizados usualmente para defesa de território ou competição por fêmeas durante o período reprodutivo. Outro exemplo curioso entre os mamíferos é o dos musaranhos. Capazes de transferir o veneno de várias maneiras, os musaranhos usualmente utilizam seu veneno para imobilizar pequenas presas e preservá-las frescas por mais tempo. Já dentre os primatas, o Nycticebus é o único gênero venenoso conhecido até hoje. Nesses primatas, o veneno é produzido por uma glândula no braço e é ativado quando misturado à saliva. Esses animais lambem suas glândulas de veneno, tornando sua mordida venenosa.
Só no Brasil são notificados em torno de 100 mil acidentes com animais peçonhentos por ano, dentre os quais as cobras, aranhas e escorpiões são os principais envolvidos. Segundo a Organização Mundial de Saúde (OMS), anualmente em torno de 2 milhões de pessoas são envenenadas por picadas de cobras, e dentre elas mais de 100.000 morrem por consequência. Entre os sobreviventes, aproximadamente 300.000 pessoas sofrem amputações ou desenvolvem deficiência física permanente como resultado de acidentes ofídicos. Envenenamento por picada de cobra é considerado uma doença negligenciada, como tantas outras que afetam primariamente as regiões tropicais do globo. Mas, ao contrário de outras doenças sérias, o tratamento de pacientes com soro antiofídico é altamente eficaz e capaz de prevenir morte ou sequelas mais graves.
Em cobras, a utilização de veneno está primariamente ligada à predação, e a composição química desses venenos varia significativamente não apenas entre as diferentes espécies, mas também em populações geograficamente distintas da mesma espécie. Essas diferenças químicas resultam de diversos mecanismos, muitos dos quais estão relacionados a modificações nos padrões de expressão gênica nas glândulas de veneno ou em modificações nas proteínas do veneno em si, e não necessariamente a diferenças nas sequências dos genes que codificam para essas proteínas tóxicas. Desde 1996, a explicação mais aceita para as diferenças na composição dos venenos de populações geograficamente distintas de cobras da mesma espécie é a dieta. E essa explicação, apoiada por muita evidência empírica, faz sentido: as cobras utilizam o veneno primariamente para predação, imobilizando e digerindo a presa. E a população de presas varia na sua susceptibilidade ao veneno em diferentes regiões. Isso sugere que a variação geográfica da composição do veneno reflete a seleção natural de cobras mais eficientes em se alimentar das presas locais.
Mas, enquanto a maioria das cobras utiliza veneno para predação, três grupos de cobras, chamadas de cobras cuspidoras, são capazes de utilizar o veneno como um projétil de defesa. E um estudo publicado essa semana na revista Science revelou os mecanismos evolutivos que explicam a repetida evolução desse comportamento nesses grupos aparentados de cobras, as Elapidae. Curiosamente, esse comportamento evoluiu de maneira independente nas cobras cuspidoras africanas (Naja: subgênero Afronaja), nas cobras cuspidoras asiáticas (Naja: subgênero Naja) e nas cobras cuspidoras da espécie Hemachatus haemachatus. O comportamento de cuspir o veneno parece não ter papel na captura de presa, mas sim na defesa da cobra contra predadores. Essas cobras são capazes de projetar o seu veneno a uma distância de até 2.5 metros e buscam atingir o olho do agressor. O veneno dessas cobras é capaz de causar intensa dor ocular, inflamação e até cegueira, e parece bioquimicamente distinto do veneno de outras Elapidae.
Os resultados dos métodos de filogenética molecular e calibração com fósseis sugerem que o comportamento de cuspir se originou na linhagem africana em torno de 6,7-10,7 milhões de anos atrás, enquanto na linhagem asiática o comportamento de cuspir se originou em torno de 2,5-4,2 milhões de anos atrás (Figura 1a). Os pesquisadores não foram capazes de determinar com precisão a origem desse comportamento no terceiro grupo. Por meio de transcriptômica e proteômica das glândulas de veneno, os pesquisadores caracterizaram as proteínas presentes no veneno de cada um dos grupos de cobras cuspidoras, assim como de espécies de cobras não-cuspidoras. Curiosamente, a composição do veneno de todas as cobras estudadas é dominada por toxinas do grupo 3FTX, enquanto em muitas das espécies estudadas as fosfolipases A2 são o segundo grupo de proteínas em abundância. Apesar das similaridades entre os venenos, a composição dos venenos das cobras cuspidoras é distinta não apenas das cobras não-cuspidoras, mas também entre si (Figura 1b).

O veneno das cobras cuspidoras é abundante em um tipo particular de proteína 3FTX com efeito citotóxico, um dos principais componentes ativos desses venenos, apesar de a ação isolada desse componente do veneno ser incapaz de recapitular o efeito citotóxico do veneno como um todo, sugerindo assim uma ação sinergética entre componentes distintos. Para entender em maior detalhe a função dos diferentes componentes dos venenos de cobras cuspidoras, e da sua capacidade de causar dor intensa, os pesquisadores realizaram testes de ativação de neurônios sensoriais com as diferentes frações do veneno. Os resultados apontam para a ação sinérgica entre o componente citotóxico e as fosfolipase A2. Na presença dessas fosfolipases, o efeito citotóxico dos 3FTX é significativamente amplificado. E, ao estudar a fosfolipase A2 no veneno das elapideas, os pesquisadores descobriram que fosfolipase A2 é significativamente mais abundante nos venenos das cobras cuspidoras quando comparado ao das cobras não-cuspidoras. Além disso, as fosfolipase A2 de cobras cuspidoras são, em geral, mais ativas do que aquelas das cobras não-cuspidoras. E, curiosamente, apesar das semelhanças funcionais entre as fosfolipase A2 das cobras cuspidoras, essas proteínas apresentam claras diferenças entre os três grupos de cobras cuspidoras.
É possível também que o ato de elevar o corpo acima do chão, associado à expansão lateral do corpo, tão comumente associado às imagens de najas (Figura 2), tenha sido uma etapa importante, ou um comportamento precursor, na evolução do comportamento de cuspir. Assim, a semelhança no comportamento, na morfologia, e até mesmo na similaridade entre as propriedades funcionais dos venenos das cobras cuspidoras é mais um exemplo de convergência evolutiva.

Mas a razão pela qual a habilidade de cuspir veneno evoluiu independentemente nesses três grupos de cobras, ao invés da injeção do veneno através da mordida, como acontece com a maioria das outras espécies de cobras peçonhentas, ainda não é completamente compreendida. No entanto, os autores propõem uma hipótese fascinante para explicar esse fenômeno. A evolução das cobras cuspidoras africanas ocorreu pouco depois da divergência dos hominínios da linhagem dos bonobos e chimpanzés, o que coincide com a emergência do bipedismo, o crescimento do cérebro, o uso de ferramentas e a ocupação das savanas. De forma semelhante, a evolução desse comportamento no grupo de cobras cuspidoras asiáticas coincide com a chegada do Homo erectus na Ásia. Assim, a evolução independente do comportamento de cuspir nesses três grupos de cobras pode ser mais um dos legados de Lucy.
Ao longo dos últimos 75 milhões de anos, a evolução dos primatas, principalmente sua neurobiologia e seu comportamento, parece ter sido influenciada pela evolução das cobras, e vice-versa. E a luta pela existência imposta pela evolução dos hominínios tanto na África como na Ásia pode ter sido a principal força motriz da evolução desse comportamento nas cobras cuspidoras. E, quem diria que cuspir seria um comportamento favorecido pela seleção natural e tão arraigado na história dos nossos ancestrais!
Ana Almeida
California State University, East bay
Para saber mais:
Ferraz CR. Et al. 2019. Multifunctional Toxins in Snake Venoms and Therapeutic Implications: From Pain to Hemorrhage and Necrosis. Frontiers in Ecology and Evolution. https://doi.org/10.3389/fevo.2019.00218
Headland TH, Greene HW. 2011. Hunter-gatherers and other primates as prey, predators, and competitors of snakes. PNAS 108(52): E1470-E1474.
Stayton C.T. 2015. What does convergent evolution mean? The interpretation of convergence and its implications in the search for limits to evolution. Interface Focus 5: 20150039. http://dx.doi.org/10.1098/rsfs.2015.0039.
Ward-Smith H, Arbuckle K, Naude A, Wüster W. 2020. Fangs for the Memories? A Survey of Pain in Snakebite Patients Does Not Support a Strong Role for Defense in the Evolution of Snake Venom Composition. Toxins 12(3), 201; https://doi.org/10.3390/toxins12030201
Westhoff G, Tzschätzsch K, Bleckmann H. 2005. Spitting behaviour of two species of spitting cobras. Journal of Comparative Physiology A 191: 873–881.