As plantas e os seus mil e um transcriptomas

Cientistas publicam o resultado do sequenciamento de mais de 1.000 transcriptomas de plantas de diferentes linhagens evolutivas. Mas e daí?

Nessa última semana, a revista Nature publicou o resultado de um esforço multinacional de sequenciamento do  transcriptoma de 1.124  espécies de algas e plantas terrestres. Essa iniciativa é parte do projeto 1000 Plant Genomes, também conhecido como 1KP, um amplo projeto dedicado à compreensão da história evolutiva das plantas. Esse artigo é, sem dúvida, o estudo sobre evolução das plantas (ou do grupo tecnicamente chamado de Viridiplantae) mais amplo já realizado, tanto em termos de amostragem quanto em termos da quantidade de dados analisada.

Mas, o que aprendemos com essa quantidade gigantesca de dados?

Nesse artigo, os cientistas do 1KP revisam as principais relações evolutivas entre algas e plantas terrestres, entre os principais grupos de gimnospermas, assim como sua relação com as angiospermas, e as relações evolutivas entre as principais linhagens de plantas com flores, a partir da comparação de mais de 400 genes extraídos dos milhares de transcriptomas analisados. Um resumo das relações entre as principais linhagens evolutivas está apresentado na Figura 1 abaixo.

ana.png
Figura 1 – As principais relações evolutivas entre as diversas linhagens de plantas, baseadas na análise de 410 genes extraídos dos vários transcriptomas analisados pelo 1KP. Em vermelho, o grupo das plantas com flores, o grupo de maior diversidade de espécies de plantas. As relações que já haviam sido anteriormente propostas ganharam mais robustez a partir do grande conjunto de dados analisados. (Fonte: Modificada da Fig. 2 da publicação do 1KP).

Curiosamente, e a despeito da quantidade gigantesca de dados analisados, os cientistas foram cautelosos ao apresentar os resultados das análises filogenéticas, pois em muitos dos casos as várias abordagens apresentaram resultados conflitantes, particularmente em relação a divergências entre genes nucleares e dos cloroplastos.

De maneira geral, muitas das relações apresentadas na Figura 1 – assim como muitas das suas incertezas – já eram anteriormente conhecidas pela comunidade científica. Por exemplo, uma das principais questões na evolução das plantas diz respeito à linhagem de algas mais proximamente relacionada às plantas terrestres. Dois cenários despontam como igualmente possíveis no presente estudo: (i) as plantas terrestres são mais relacionadas às algas Zygnematophyceae; ou (ii) as plantas terrestres são igualmente relacionadas às algas Zygnematophyceae e Coleochaetales. Ambas as linhagens, juntamente com outras linhagens de algas e plantas terrestres, compõem o grupo das Streptophyta. Desde pelo menos 2012 essas relações já haviam sido postuladas.

Um outro exemplo refere-se à relação entre as linhagens de briófitas (os musgos, hepáticas e antóceros), assim como à relação entre elas e a plantas vasculares, que não foram completamente resolvidas pelo estudo. Enquanto os genes de cloroplastos sugeriram que as linhagens de briófitas são mais relacionadas entre si e igualmente relacionadas às plantas vasculares, a análise de todos os dados em conjunto – incluindo genes nucleares – sugeriu que os musgos e as hepáticas são mais relacionados às plantas vasculares do que aos antóceros.

Os cientistas do 1KP foram capazes também de identificar 244 eventos de duplicação de genoma completo (do inglês whole genome duplication, WGD), 65 dos quais já haviam sido anteriormente identificados em projetos específicos de sequenciamento de genomas (Figura 2). Desses eventos de duplicação de genoma completo, o estudo identificou pelo menos um evento em cada uma das linhagens de plantas terrestres estudadas. Dentre as plantas terrestres, as samambaias apresentaram a maior frequência de duplicações de genoma, condizente com os elevados números de cromossomos encontrados nessas espécies de plantas. Ainda, diversos eventos de duplicação de genoma completo foram identificados nas linhagens de plantas com flores.  Em contraste ao observado nas plantas terrestres, a maioria das linhagens de algas estudadas não apresentou evidência de duplicações de genoma completo. Curiosamente, as Zygnematophyceae, um dos grupos de algas mais proximamente relacionado às plantas terrestres, exibiu a maior densidade de duplicações de genoma completo, dentre todas as linhagens de algas estudadas.

ana2.png
Figura 2 – Estimativa do número de duplicações de genomas completos ao longo da evolução das plantas. Em vermelho, à esquerda, os eventos de duplicação de genoma completo na árvore filogenética dos principais grupos de plantas. À direita, o número médio de duplicações de genoma completo nas linhagens analisadas. (Fonte: Modificada da Fig. 4 da publicação do 1KP).

Apesar de duplicações de genoma completo serem eventos frequentes na evolução das plantas terrestres, as implicações desse fenômeno para a diversificação das linhagens de plantas ainda são desconhecidas. Os cientistas do 1KP foram cuidadosos em esclarecer que não foi observada uma correlação clara entre os eventos de duplicação de genoma completo e um aumento imediato no número de espécies pós-duplicação. Não sabemos também se há, de fato, uma correlação entre eventos de duplicação completa de genoma e o surgimento de características supostamente adaptativas nas diversas linhagens de plantas. Há mais de 20 anos, eventos de duplicações de genoma completo foram postulados como importantes processos envolvidos na origem de novidades evolutivas em diversas linhagens de plantas. A lógica por trás dessa ideia baseia-se no fato de que esses eventos são capazes de gerar um excedente de material genético, relativamente disponível e capaz de, através do acúmulo de mutações, originar novos genes ou novas famílias gênicas, resultando assim no surgimento de novas características. Um exemplo de tal correlação ocorre, por exemplo, na origem evolutiva das plantas com flores. Cientistas consideram que os dois eventos de duplicação de genoma completo que precederam a evolução das plantas com flores foram cruciais para o surgimento de novos genes envolvidos na regulação e no desenvolvimento de características específicas desse grupo.

Mas seriam essas descobertas novas?

O advento de novas tecnologias de sequenciamento de DNA tem proporcionado um avanço significativo nas descobertas das bases genéticas de diversos processos biológicos. Tem permitido também a geração de uma tremenda quantidade de dados que, muitas vezes, sem um arcabouço teórico claro, acabam por não servir a um propósito muito claro no desenvolvimento do conhecimento científico.  O 1KP é, na verdade, um guarda-chuva para diversos subprojetos, espalhados em laboratórios de todo o mundo, cada qual com interesses particulares em diferentes linhagens de plantas. Esses subprojetos já realizaram importantes contribuições para o entendimento de vários aspectos da evolução das plantas, como, por exemplo, o entendimento da comunicação entre cloroplasto e núcleo, da evolução de vias metabólicas de variados compostos secundários, da origem e evolução dos mecanismos de resposta à auxina (um dos principais hormônios em plantas), dentre outras contribuições. A lista de publicações associadas aos subprojetos do 1KP pode ser encontrada aqui. Mas, a publicação da análise dos mais de mil transcriptomas das plantas em si pouco trouxe de novidade para a comunidade científica. Talvez o maior benefício desse esforço esteja na disponibilização gratuita desses. Com perguntas mais focadas, assim como aquelas realizadas no âmbito dos subprojetos, cientistas possivelmente serão capazes de estudar as implicações dos eventos duplicações de genoma completo, tão prevalentes na história evolutiva das plantas terrestres e ainda tão misteriosos.

Curiosamente, pensar nos mais de mil transcriptomas do 1KP me remeteu aos famosos contos árabes “As Mil e Uma Noites”, talvez pelo fato de ambos tratarem de uma quantidade semelhante de coisas: enquanto os contos árabes narraram eventos de mil e uma noites entre o rei Xariar e sua esposa Xerazade, o 1KP sequenciou “mil e tantos” transcriptomas das mais variadas espécies de plantas.  “As Mil e Uma Noites” é o título dado a um conjunto de histórias de várias origens, incluindo o folclore árabe, persa e indiano.  Não há uma versão definitiva da obra, pois diferentes edições divergem no número e conjunto de contos incluídos. No entanto, o eixo principal de todas as versões está organizado em torno das diversas histórias narradas, mas nunca concluídas, por Xerazade, esposa do rei Xariar, no intuito de escapar à sua quase inevitável execução.

De forma semelhante, o 1KP é constituído por um conjunto de subprojetos, cada qual contando uma história particular da evolução de um determinado grupo de plantas. Porém, no caso de “As Mil e Uma Noites”, os contos isoladamente têm, talvez, menor importância do que o conjunto da obra: cada conto é parte de uma longa história, cujo resultado final permite que Xerazade, após mil e uma noites, escape do seu destino fatal. Já no caso do 1KP, o valor parece estar nas contribuições isoladas de cada subprojeto, mais do que no conjunto da obra, pois essa não trouxe nada de muito novo, mas sobretudo deu mais suporte ao que já sabíamos anteriormente. Talvez falte ao 1KP um fio condutor, tal qual o de “As Mil e Uma Noites”, capaz de gerar interesse suficiente para manter-se vivo a longo prazo e resolver de fato as principais questões da história evolutiva das plantas.

Ana Almeida

California State University East Bay (CSUEB)

 

Para saber mais:

Carpenter E.J. et al. 2019. Access to RNA-sequencing data from 1,173 plant species: The 1000 Plant transcriptomes initiative (1KP). GigaScience 8: giz126.

Morris, J.L. et al. The timescale of early plant evolution. 2018. PNAS, 115: E2274-E2283.

Ruhfel, B.R. et al. 2014. From algae to angiosperms–inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evolutionary Biology, 14: 23.

Soltis, P.S.; Folk, R.A.; Soltis, D.E. 2019. Darwin Review: angiosperm phylogeny and evolutionary radiations. Proc. R. Soc. B, 286: 0190099.

Soltis, P.S. et al. 2015. Polyploidy and genome evolution in plants. Current Opinion in Genetics & Development, 35: 119-125.

 

A mariposa precede a flor

Estudo filogenético mostra que os primeiros lepidópteros (borboletas e mariposas) não eram polinizadores de flores, como a maioria das espécies atuais.

As borboletas e mariposas ocupam um lugar especial na biologia evolutiva. Belas e efêmeras, polinizadoras e herbívoras, migratórias e cosmopolitas, elas serviram de modelos para diversos estudos que hoje ilustram os livros didáticos. Um trabalho publicado esta semana na revista PNAS descreve quando cada grupo de lepidóptero se originou e convida a repensar alguns desses modelos. Continue Lendo “A mariposa precede a flor”

Eu prefiro ser essa metamorfose ambulante

Em 1835, Charles Darwin, em sua histórica viagem a bordo do HMS Beagle, visitou o Chile, onde conheceu um naturalista alemão chamado Renous. Renous havia sido preso dois ou três anos antes por heresia. A prisão aconteceu quando as pessoas do povoado de San Fernando descobriram que ele transformava, “por bruxaria”, lagartas em borboletas. O conhecimento sobre a metamorfose dos insetos ainda não havia chegado aos cidadãos de bem de San Fernando, apesar de ser estudado já há mais de 2000 anos! O filósofo grego Aristóteles tinha um grande interesse na metamorfose completa dos insetos, pois acreditava que a transformação radical de uma simples larva em um inseto adulto altamente complexo oferecia uma oportunidade de testar suas ideias sobre reprodução animal e desenvolvimento embrionário. Ele acreditava que a metamorfose e o mistério da geração espontânea de vida estavam ligados. Para Aristóteles, explicar a metamorfose era uma oportunidade para explicar a origem da vida a partir de material não-vivo.

A grande maioria das espécies do subfilo Hexapoda (artrópodes com três pares de pernas) passa por algum tipo de metamorfose (Figura 1). A extensão das mudanças pelas quais os insetos passam durante seu desenvolvimento é usada para classificá-los em três categorias. Os ametábolos, como as traças dos livros, sofrem pouca ou nenhuma metamorfose. Quando nascem de ovos, eles já se parecem com adultos, ainda que pequenos, e simplesmente crescem fazendo uma série de mudas pelas quais saem de seus exoesqueletos pequenos, crescem e produzem um novo exoesqueleto, maior. Hemimetábolos são os insetos de metamorfose incompleta, como baratas, gafanhotos, percevejos e libélulas. Eles eclodem como ninfas –versões em miniatura de suas formas adultas– e à medida que crescem gradualmente desenvolvem asas e genitais. Por fim, os holometábolos são os insetos com metamorfose completa, como besouros, moscas, borboletas, mariposas e abelhas, que eclodem como larvas entram em um estágio de pupa inativo e finalmente emergem como adultos, que não se parecem com as larvas. Durante o estágio de pupa, órgãos e tecidos são extensamente remodelados e, em alguns casos, completamente reconstruídos. O resultado é uma mudança drástica na morfologia, na fisiologia e no comportamento de um inseto.

tatiana 1.png
Figura 1. Árvore filogenética que mostra a relação entre ordens do subfilo Hexapoda e a classificação dos insetos de acordo com a extensão da mudança que ocorre durante seu desenvolvimento (modificado de Cheong et al. 2015). 

Durante sua evolução, os insetos apresentaram várias estratégias de história de vida, algumas das quais persistem nas ordens atuais. Os primeiros insetos não sofriam metamorfose. Eles nasciam dos ovos essencialmente como adultos em miniatura. Hoje, poucos insetos são ametábolos. Com a evolução das asas e do voo, o adulto passou a ser o estágio terminal sem nenhuma muda, e surgiu o estágio imaturo, denominado ninfa, que não possuía asas e órgãos genitais (hemimetábolos). Embora as ninfas geralmente se assemelhem ao adulto, a diferença entre os dois estágios pode ser bastante dramática, como visto na transição da ninfa aquática para o adulto aéreo nas libélulas. Cerca de 350 milhões de anos atrás, no período Cambriano, alguns insetos mudaram sua forma de amadurecer, chegando a ter mudanças extremas durante o desenvolvimento, com um estágio larval que nada se parece com o adulto. A observação de grupos com diferenças relativamente pequenas entre larvas, pupas e adultos, como os insetos da ordem Raphidioptera (Figura 2), facilita o entendimento da evolução da metamorfose como um processo contínuo, em vez de uma transformação abrupta. As larvas desses insetos não diferem consideravelmente dos imaturos de hemimetábolos e uma muda converte sua larva em pupa móvel com asas externas e mandíbulas e pernas livres. Na última muda, o adulto emerge.

tatiana 2.png
Figura 2. Metamorfose em Raphidioptera, um holometábolo basal. (a) Um ínstar larval tardio (possivelmente final). (b) Uma pupa macho do instar intermediário, vistas lateral (esquerda) e ventro-lateral (direita). (c) macho adulto. Barras de escala, 5 mm. (Jindra. 2019).

Há duas hipóteses para explicar a evolução da metamorfose completa (Figura 3). Na primeira, a pupa é considerada uma versão modificada do último ínstar larval (hipótese 1). A favor dessa hipótese está a observação de que estágios de repouso em forma de pupa não são exclusivos de holometábolos, pois evoluíram independentemente em alguns hemimetábolos. Na segunda (hipótese 2), haveria em insetos hemimetábolos um estágio embrionário críptico, a pró-ninfa, da qual evoluiu a larva dos holometábolos. O estágio larval de vida livre, capaz de se alimentar, tornou-se dedicado ao crescimento e os estádios da ninfa dos hemimetábolos foram reduzidos a um único estágio incapaz de se alimentar, a pupa, que proporcionava a transição para o adulto. Um experimento interessante foi o tratamento experimental de pró-ninfas com um hormônio inibidor da metamorfose, o hormônio juvenil: ele induz a diferenciação tecidual em pró-ninfas, imitando os processos que ocorreram durante a evolução da larva. Uma diferença importante entre as duas hipóteses é que na hipótese 1 pressupõe-se que a evolução da larva antecedeu o surgimento da pupa (que é, portanto, uma larva modificada), e os ínstares larvais anteriores são considerados homólogos à ninfa dos hemimetábolos. De acordo com hipótese 2, o estágio larval, por sua vez, evoluiu da pró-ninfa embrionária. O assunto está longe de ser resolvido.

tatiana 3.png
Figura 3. Hipóteses alternativas para relações evolutivas entre os estágios dos holometábolos e os de um ancestral hipotético hemimetábolo. As caixas verdes à direita marcam os estágios embrionários sucessivos (E1, E2). Esquerda: hipótese 1, na qual a larva eclode em um estágio correspondente a E2, que seria o pró-ninfa de hemimetábolos. Todos os ínstares larvais de holometábolos (amarelo) seriam equivalentes à pró-ninfa embrionária (PN), enquanto todos os ínstares juvenis de hemimetábolos equivaleriam à pupa (laranja). Direita: hipótese 2, na qual larvas de hemi e holometabólos eclodiriam ambas após E2. A pupa seria uma larva de hemimetábolo modificada em estágio tardio (modificado de Jindra. 2019).

Também podemos nos perguntar se haveria algum ganho adaptativo da metamorfose completa. A metamorfose foi tão bem-sucedida que, hoje, mais de 80% das espécies de insetos, possivelmente representando cerca de 60% de todas as espécies de animais do planeta, passam por uma metamorfose completa. De fato, a metamorfose permite que imaturos e adultos se alimentem de diferentes recursos. Darwin destaca, em “A origem das espécies”, que diferentes estágios podem estar diferencialmente adaptados a nichos particulares. Por exemplo, enquanto as lagartas estão ocupadas devorando folhas, completamente desinteressadas na reprodução, as borboletas voam de flor em flor em busca de néctar e parceiros. Os adultos das moscas varejeiras, assim como as borboletas, alimentam-se de néctar, mas suas larvas se desenvolvem em matéria orgânica em decomposição ou até mesmo de tecidos de hospedeiro vivo, como vimos em dois textos aqui no blog (sobre entomologia forense e terapia larval). Adultos e larvas não competiriam pelos mesmos recursos. Essa explicação, no entanto, não é facilmente estendida para entender a evolução de um estágio adicional de pupa, um estágio imóvel e puramente de desenvolvimento. Uma outra hipótese levantada é que a metamorfose completa seja uma adaptação que permite dissociar o crescimento (no estágio de larva) e a diferenciação (no estágio de pupa). O principal benefício da metamorfose completa seria, assim, a dissociação entre crescimento rápido na larva e diferenciação dos tecidos adultos nas pupas, facilitando a exploração de recursos alimentares efêmeros pelas larvas. A maioria das espécies precisa atingir um peso crítico antes da transição para a maturidade. Com as rápidas taxas de crescimento das larvas, o peso crítico seria atingido em uma idade menor, o que seria um traço adaptativo. Alternativamente, dissociar crescimento e diferenciação pode ser benéfico em situações de intensa competição por recursos efêmeros.

Talvez, a metamorfose tenha ajudado os insetos a conquistarem diversos ambientes e contribuído para sua resiliência. Com mais de um milhão de espécies descritas e uma história de mais de 3,5 bilhões de anos, os insetos continuarão passando por seus estágios de ovo, larva, pupa e adulto, mesmo quando as condições climáticas forem inviáveis para animais como os vertebrados.

Tatiana Teixeira Torres (USP)

 

Para saber mais:

Uma edição especial do periódico Philosophical Transactions of the Royal Society B (agosto de 2019), trouxe uma série de discussões sobre metamorfose dos insetos:

Este artigo apresenta uma introdução à edição especial, mostrando os destaques apresentados nos demais artigos da edição.

Os autores apresentam dados de desenvolvimento, genéticos e endócrinos de diversos grupos de insetos para discutir hipóteses sobre a evolução da metamorfose de insetos. Eles sugerem que o desenvolvimento de holometábolos nos estágios larva-pupa-adulto seja equivalente ao de pró-ninfa>ninfa>adulto de insetos hemimetábolos, a hipótese 1 descrita no texto.

Neste artigo, o autor descreve claramente as duas hipóteses propostas para explicar a evolução da metamorfose. Mostra também descobertas sobre a sinalização por hormônio como um suporte à hipótese 2, na qual a pupa teria evoluído de um estágio pré-adulto final.

Qual será a importância da estupidez na pesquisa científica?

“Já que você é cientista, me diga aí…”. Essa é uma frase que nós cientistas ouvimos muito, em vários lugares. Dos nossos parentes, amigos, de pessoas que conhecemos. Seja sobre o Universo, máquina de lavar, forno micro-ondas, aquecimento global ou sobre a fruta que estamos comendo. Mas será que temos tantas respostas assim? Como é que nos sentimos perante a nossa ignorância?

Motivado pelo ensaio intitulado “The importance of stupidity in scientific research” (em tradução livre “a importância da estupidez na pesquisa científica”), escrito por Martin A. Schwartz, professor do Departamento de Microbiologia da Universidade de Virginia (EUA), que me foi enviado pelo querido amigo Danilo Coimbra, refleti um tanto e escrevo este post. No seu texto, o Prof. Schwartz nos conta que depois de anos encontrou uma amiga, que fez pós-graduação na mesma época que ele, e com muito espanto soube que ela desistiu de ser cientista para fazer direito e trabalhar como advogada. Abismado com a notícia ele perguntou o motivo e ela revelou que se sentia estúpida o tempo inteiro, por isso mudou de área. É importante destacar que ela, desde aquela época, era muito competente e que essa competência se reflete na posição que ela ocupa hoje. Isso tocou o Prof. Schwartz, que ficou refletindo sobre o assunto por dias e percebeu que este é um sentimento bem comum para ele. Mas por que será que ele continua? Continue Lendo “Qual será a importância da estupidez na pesquisa científica?”

As duas origens do sistema nervoso

O movimento dos animais depende de células musculares conectadas por tendões ao esqueleto, ou pele, e de neurônios que as coordenam através de impulsos elétricos. Esses dois tipos celulares permitem toda a variedade de comportamentos que reconhecemos como tipicamente animais, desde rastejar a escrever estas linhas. Para a surpresa dos zoólogos, trabalhos recentes indicam que neurônios e células musculares evoluíram duas vezes, independentemente. Continue Lendo “As duas origens do sistema nervoso”

Quanto custa evitar a catástrofe ambiental?

A comunidade científica tem mostrado sistematicamente os riscos que corremos de uma catástrofe ambiental. Quanto custa evitá-la?

Nesta postagem, discuto o estado do mundo e nossas perspectivas de ação diante dos riscos crescentes de catástrofe ambiental. Esse assunto se tornou foco de negacionismo nesses tempos da pós-verdade. Mas como diz o ditado, não adianta tapar o sol com peneira. As evidências de que estamos nos encaminhando para uma catástrofe ambiental são claras, inegáveis até, e o que boa parte da humanidade está fazendo diante da situação me faz pensar em metáforas como a de um avestruz enfiando a cabeça num buraco ou numa cena do filme Titanic, inspirada em fatos reais (em contraste com a metáfora do avestruz), na qual se ordena à orquestra que siga tocando enquanto o navio afunda.

A comunidade científica tem avisado repetidamente sobre tal risco. Em 1992, a União de Cientistas Preocupados (Union of Concerned Scientists), incluindo a maioria dos Prêmios Nobel então vivos, publicou um aviso à humanidade (World Scientists’ Warning to Humanity). O intuito era encorajar uma diminuição da destruição ambiental de modo a evitar substancial miséria no futuro de nossa espécie e do restante da biosfera. Há 25 anos, os cientistas buscavam cumprir seu papel ao expressar preocupação com os prejuízos ao planeta Terra relativos à diminuição da camada de ozônio, da disponibilidade de água doce, da vida marinha, das florestas, da biodiversidade, bem como à mudança climática. Eles nos lembravam de que mudanças fundamentais eram necessárias para evitar que nos aproximássemos de muitos limites de tolerância do planeta e da biosfera, a partir dos quais grandes e irreversíveis prejuízos poderiam ocorrer.

Em 2017, 15.364 cientistas de 184 países lançaram um segundo aviso (versão em português aqui). Fui um dos signatários. Passados 25 anos daquele primeiro aviso, a análise da série temporal de dados mostrou que, com exceção da estabilização da camada de ozônio, a humanidade havia fracassado em realizar progressos suficientes para fazer frente aos desafios ambientais. Antes pelo contrário, muitos dos problemas causadas por nosso sistema de produção e consumo e nosso estilo de vida haviam piorado. Se uma catástrofe ambiental era visível num horizonte ainda relativamente distante em 1992, em 2017 estava claro que estávamos rumando a passos largos a um estado de transição do sistema planetário de graves consequências, com uma janela de oportunidade limitada para alterar o curso da deterioração das condições de funcionamento do planeta Terra, de manutenção da biosfera e de preservação de nossas condições de vida.

Embora não constituam de modo algum os únicos problemas que o sistema Terra agora enfrenta, alguns desafios foram colocados em destaque naquele segundo aviso: a trajetória de mudança climática, claramente atribuível ao aumento da concentração de gases estufa (para quem se deixa seduzir pelo canto da sereia negacionista, sugiro ler “Mercadores da Dúvida”, Merchants of Doubt, de Naomi Oreskes e Erik Conway, ou “Avaliando ‘Mudança Climática Perigosa’”, de James Hansen e colaboradores, ou assistir falas de Naomi Oreskes, no You Tube e no TED); a perda de vegetação nativa, a perda de biodiversidade associada (correspondente a uma extinção em massa) e seus muitos impactos sobre os serviços que os ecossistemas propiciam à humanidade; e os impactos do modelo dominante de produção agrícola, especialmente da pecuária associada a dietas baseadas no consumo de carne.

A perda de biodiversidade causa especial preocupação. Desde 1998, a WWF publica a cada dois anos o Relatório Planeta Vivo, uma compilação muito informativa e útil sobre o estado do planeta, leitura fundamental tanto para o público em geral quanto para tomadores de decisão. Entre as muitas fontes de informação compiladas nesse relatório temos o Índice Planeta Vivo (Living Planet Index), que fornece uma medida do estado da diversidade biológica do planeta com base nas tendências populacionais de espécies de vertebrados de diferentes habitats terrestres, marinhos e de água doce.

No Relatório Planeta Vivo de 2018 (sumário em português aqui), podemos ver que, de 1970 a 2014, a abundância média de 16.704 populações monitoradas em todo o globo, pertencentes a 4.005 espécies, sofreu um declínio médio de 60%. No caso das populações de espécies de água doce, tivemos o pior declínio no mesmo período (em média, 83%). Para espécies marinhas, o declínio médio, de 1970 a 2012, foi de 36%, conforme relatado no Relatório Planeta Vivo de 2016 (sumário em português aqui). No mesmo relatório, vemos que, para espécies dependentes de terras úmidas (wetlands), esse declínio foi de 39%; para espécies terrestres, de 38%; e para espécies de florestas tropicais, de 41%.

A situação a que chegamos é muito séria, de fato comparável a uma extinção em massa. Este ano foi divulgado que até 1 milhão de espécies estão ameaçadas de extinção, muitas nas próximas décadas. 5,9 milhões de espécies terrestres (9% de tais espécies) não têm habitat insuficiente para sobrevivência a longo termo a não ser que seja feita restauração. Na história do planeta, esta é a segunda extinção em massa causada por seres vivos. A primeira foi causada pela evolução da fotossíntese em cianobactérias, que levou à extinção de uma grande diversidade de espécies anaeróbicas obrigatórias, no chamado holocausto do oxigênio. Mas, diferente de nós, as cianobactérias não tinham opção de não realizar fotossíntese e, assim, a elas não se poderia imputar responsabilidade pela extinção de outras espécies. Nosso caso é muito distinto, porque à nossa espécie cabe tal responsabilidade, dado que temos opção de fazer as coisas de modo diferente.

Mas qual seria o problema de tal perda de biodiversidade? De um lado, essa perda se mostra problemática pelo valor intrínseco da vida e de sua diversidade, de cada espécie que compõe a biosfera. Valor intrínseco tem sido objeto de controvérsia, pela dificuldade de sua mensuração, o que – argumentam alguns – dificulta que tenha papel importante nos debates sociais, políticos e econômicos. Não podemos perder de vista, contudo, que o valor intrínseco coloca uma questão central em foco, a qual é perdida de vista quando nos prendemos apenas aos valores instrumentais que a biodiversidade tem para nossas vidas: trata-se precisamente da questão de nossa responsabilidade, como seres capazes de deliberação e escolha, pela perda das outras formas de vida com as quais dividimos o planeta. Mas mesmo que o valor intrínseco da vida não cale fundo no seu ser, ainda assim você teria boas razões para se preocupar com a perda da biodiversidade, por conta dos chamados valores instrumentais, ou, dito de outra maneira, pelos serviços ecossistêmicos fornecidos pela vida. Afinal, sem os sistemas ecológicos e seres vivos, não poderíamos permanecer vivos, quanto mais manter a qualidade de nossa existência.

Introduzido em 2009, o conceito de limites planetários busca definir limites ambientais dentro dos quais a humanidade pode operar com segurança. Trata-se de uma maneira de sumariar os desafios que enfrentamos e buscar influenciar o desenvolvimento de políticas globais que possam propiciar uma transição para a sustentabilidade. Na última versão do modelo de limites planetários, que pode ser visto na imagem de abertura, foram incluídos nove limites, relativos a integridade da biosfera, mudança climática, novas entidades (novas substâncias, novas formas de substâncias preexistentes e formas de vida modificadas com potencial de gerar efeitos geofísicos e/ou biológicos indesejáveis), diminuição da camada de ozônio, carga de aerossóis na atmosfera, acidificação dos oceanos, fluxos biogeoquímicos (de fósforo e nitrogênio), uso de água doce e mudanças nos padrões de uso da terra. O modelo é capaz de mostrar quando a humanidade está num espaço de operação seguro em relação a um dado limite do planeta (cor verde), quando se encontra numa zona de incerteza, com risco crescente de ultrapassar um dado limite (cor amarela), e quando um limite já foi ultrapassado, levando nossa operação para além da incerteza (cor vermelha), com grande risco de que levemos o sistema Terra a operar em um novo estado, no qual serviços fundamentais para a nossa sobrevivência e qualidade de vida podem desaparecer. A análise dos limites planetários em 2015 mostrou que, conforme nosso melhor conhecimento, já estávamos operando para além da zona da incerteza, em alto risco, em três deles. Ultrapassamos os limites de integridade da biosfera e de funcionamento dos fluxos de fósforo e nitrogênio (especialmente pelo extensivo uso de fertilizantes contendo esses elementos químicos), a ponto de acarretar um novo estado de funcionamento. Em dois outros limites importantes, já operamos na zona de incerteza: mudanças climáticas e dos padrões de uso da terra.

O modelo dos limites planetários propicia uma maneira muito útil de entender os riscos e descompassos associados ao modo como as sociedades humanas têm operado em sua relação com a biosfera e o sistema Terra. Ele reforça o aviso lançado em 2017 por cientistas que buscaram mostrar como estamos ameaçando nosso futuro ao não enfrentarmos o problema do consumo dos recursos do planeta, bem como de suas marcantes desigualdades em termos geográficos e demográficos. Não se trata, contudo, de apenas emitir um aviso, mas de sugerir caminhos para a solução da atual crise socioambiental, mencionando-se naquele artigo a limitação do crescimento populacional, a reavaliação de politicas econômicas baseadas no crescimento (por exemplo, do PIB, em contraste com modelos de desenvolvimento sem crescimento), a redução das emissões de gases estufa, o incentivo ao uso de energias renováveis, a proteção dos habitats naturais, a restauração de ecossistemas, o controle da poluição, o combate à perda de animais (defaunação) e o controle das espécies invasoras.

Entre as expectativas dos que assinaram o artigo, havia a ação sociopolítica, incentivando-se cientistas, influenciadores na mídia e cidadãos em geral a insistirem para que governos tomassem medidas imediatas em relação aos problemas postos, como um “imperativo moral diante das gerações atuais e futuras de seres humanos e das outras formas de vida”. Mas também havia uma expectativa para cada um de nós, em nossos modos de vida: de que reexaminássemos e buscássemos mudar nossos comportamentos individuais e padrões de consumo.

Esses eram passos urgentes em 2017, num esforço de salvaguardar o planeta e a biosfera de crescentes e substanciais ameaças, e são ainda mais urgentes hoje, quase dois anos depois. Uma diferença muito importante é que uma quantidade crescente de líderes mundiais e também da população em geral se recusa a escutar a comunidade científica em tempos recentes. Diante da gravidade da situação em que se encontra o planeta e, por consequência, nossa própria existência, quanto estaríamos dispostos a investir para resolver ou mitigar os problemas ambientais que nos desafiam?

Quanto custa a conservação de áreas protegidas?

Por mais que seja interessante considerar essas estimativas relativas ao custo de manter áreas protegidas, é evidente que elas não são suficientes para fazer frente aos desafios que o estado do planeta nos coloca. Para fazermos uma transição rumo à sustentabilidade, necessitamos mudar nosso sistema de produção e consumo.

Avaliar o custo da gestão de áreas protegidas nos países em desenvolvimento não propicia, decerto, uma estimativa global de quanto custaria resolver ou mitigar todos os problemas ambientais contemporâneos. Contudo, fornece uma perspectiva relevante acerca da distância a que nos encontramos dos investimentos necessários. Uma estimativa disponível na literatura estabelece que seriam necessários 13 bilhões de dólares por ano para manter uma extensão suficiente de áreas protegidas nos países em desenvolvimento. Esse valor está bem além dos investimentos anuais em tais áreas protegidas. Contudo, não é difícil mostrar que esses investimentos podem ser alcançados, sobretudo se os compararmos com outros gastos globais. Por exemplo, 13 bilhões de dólares equivalem a 1% do que governos de todo o mundo gastam por ano em subsídios prejudiciais ao meio ambiente. Para usar outra comparação que mostra como, diante do estado do mundo, temos alocado recursos financeiros de modo equivocado, esse valor corresponde a 2% do que os norte-americanos gastam por ano em refrigerantes. Por fim, uma análise somente dos custos das áreas protegidas não considera os benefícios que essas áreas oferecem, inclusive de ordem econômica. Em muitos casos, a proteção de áreas biologicamente importantes pode gerar renda que supera os custos de sua criação e manejo.

Mudar sistema de produção e consumo… Mas em que direção?

Uma métrica muito interessante para pensar nosso impacto sobre o planeta Terra é a pegada ecológica. Ela mede o impacto das atividades humanas em termos da área de terra e água biologicamente produtivas necessária para produzir os bens consumidos e assimilar os rejeitos gerados por aquelas atividades. Ela corresponde, pois, ao ambiente necessário para produzir os bens e serviços necessários para suportar certo estilo de vida. É possível cada um calcular sua pegada ecológica. Combinando-se a pegada ecológica de todos os humanos, podemos calcular a pegada ecológica global.

Em 2014, estimou-se que a pegada ecológica global era de cerca de 20 bilhões de hectares, o que corresponde a uma Terra e meia. Isso torna muito evidente nossa insustentabilidade. Obviamente, não temos uma Terra e meia. Evidentemente, mesmo que nossa pegada ecológica fosse uma Terra, ainda seríamos insustentáveis, porque o planeta Terra deve manter não somente nossa espécie. E antes de nutrir esperanças de que poderíamos encontrar outro planeta para viver, convido o leitor a pensar não somente na improbabilidade de que seja encontrado algum lugar para ir a uma distância viável, mas, para além disso, em quem serão os “escolhidos” para colonizar outro planeta. Ou alguém acha que 7 bilhões de humanos seriam translocados para algum outro lugar?

Pegada ecológica global. De WWF: Living Planet Report 2018 (p. 30).

Um modo interessante de entender a relação entre nosso estilo de vida e sistema de produção e consumo, de um lado, e sustentabilidade, de outro, é cruzar dados sobre pegada ecológica com dados sobre o Índice de Desenvolvimento Humano (IDH).

Pegada ecológica em relação ao IDH ajustado para desigualdade. De WWF: Living Planet Report 2014 (p. 60) – Sumário em português aqui.

Usemos esse gráfico para pensar o chamado desenvolvimento sustentável. O desenvolvimento sustentável pode ser considerado um oxímoro, figura de linguagem que relaciona numa mesma expressão palavras que exprimem conceitos contrários. Para alguns, o conceito de desenvolvimento sustentável esvaziou os debates sobre as questões ambientais ao produzir um superficial consenso. Como seria possível desenvolvimento sustentável numa humanidade com pegada ecológica de uma Terra e meia? Desenvolver com sustentabilidade em tal situação? Claramente isso é impossível se desenvolvimento corresponder a crescimento econômico! Lovelock pode muito bem estar certo ao afirmar que somente podemos conduzir nosso sistema de produção e consumo para um retrocesso sustentável. Ou a alternativa pode ser promover desenvolvimento sem crescimento econômico, o que implica distribuir benefícios de maneira mais igualitária.

No gráfico acima, podemos ver, à primeira vista, como o conceito de desenvolvimento sustentável poderia ser operacionalizado. Vejam o quadrado verde na base direita do gráfico, que indica como poderíamos ser sustentáveis: pegada ecológica abaixo de uma Terra e IDH acima de 0,8. Mas não há qualquer país nesse quadrado verde! Assim, tratar-se-ia mesmo de operacionalizar desenvolvimento sustentável ou de reforçar que se trata de um oxímoro que pauta um consenso sem consequências? Para falar de modo muito simples e direto, esse gráfico mostra que nossos sistemas de produção e consumo só têm dois atratores: ou não se tem qualidade de vida (falando de modo bem cru, se morre de fome) e se é sustentável, ou se tem qualidade de vida (sendo bem claro, mais do que se precisa) e não se é sustentável.Não conheço melhor evidência da necessidade de mudarmos nossos sistemas de produção e consumo.

Também fica claro nesse gráfico como não temos ainda qualquer indicação sobre qual seria o sistema de produção e consumo para onde deveríamos ir. Isso é importante, de um lado, porque indica que devemos de fato atentar à natureza autocontraditória do desenvolvimento sustentável e aos seus efeitos de esvaziamento dos debates sobre questões socioambientais. De outro, mostra que não se trata de pensar numa opção entre diferentes sistemas de produção e consumo que estariam colocados, mas de repensar mais profundamente as condições de nossa existência no planeta. Ao polarizarmo-nos em nossas posições políticas, podemos estar simplesmente perdendo de vista o quadro mais geral do mundo (the big picture).

Concluindo: o que fazer?

No último fim de semana, num evento de passarinhada promovido pela Macaw Birdwatching no Vale Encantado, aqui em Salvador, fiz uma pequena fala em meio à restinga e um dos participantes (obrigado pela questão, Chermont!) perguntou “o que a gente poderia fazer?” A pergunta se situava localmente, mas as conexões entre contextos locais e globais, num mundo de problemas na escala planetária, autorizam a pensá-la globalmente. É uma pergunta muito importante, porque é sobre esperança e sobre não nos sentirmos impotentes: o que podemos fazer diante de tudo isso? Gostaria assim de fechar este texto com algumas sugestões em resposta a essa provocação.

É importante, antes de tudo, que não deixemos de lado a racionalidade. Ela nos define como humanos. Quem abandona a racionalidade, abandona a humanidade. Por racionalidade, entendo aqui a atitude de não aceitar qualquer afirmação que se faça sobre o mundo sem apreciar as razões que apoiam a afirmação e as fontes de confiança nas informações mobilizadas para sustentar tais razões. As razões são muitas e sem dúvida não são apenas científicas, tampouco são apenas empíricas (não vêm somente da experiência), mas quando se trata do mundo natural, as evidências que temos disponíveis são uma razão muito importante para aceitarmos afirmações a seu respeito. Nesta postagem, abordei algumas dessas evidências (na verdade, a ponta de um iceberg). Uma pessoa racional respeita as evidências ao pensar sobre o mundo natural. A evidência é para ela um sintoma, um sinal, uma marca da verdade. Assim, uma primeira atitude que cada um de nós pode ter é, em vez de cair vítima da desinformação, hoje muito ruidosa nas correntes de Whatsapp e em outras redes sociais, buscar informação, assegurar-se das fontes de informação em que decidimos confiar, saber do que está ocorrendo da maneira mais completa possível.

Devemos também nos perguntar o que podemos fazer, que diferença podemos representar em nossa realidade próxima, nosso bairro, nossa cidade, escola, universidade, nosso trabalho, nosso país. Agindo localmente e pensando globalmente, sendo capazes de ver o quadro mais geral do mundo, podemos fazer diferença. São questões para nosso dia-a-dia: O que mudar em nosso estilo de vida de modo a contribuir para um mundo melhor? O que mudar em nossos padrões de consumo? O que mudar em nossa alimentação? O que mudar na educação de nossas filhas e filhos?

Mas devemos estar cientes de que não basta agir em nossas vidas individuais. Precisamos pensar o que fazer coletivamente, e então agir politicamente, por exemplo, buscando ser fontes de informação nesse oceano de desinformação em que o Titanic naufraga. Por exemplo, contribuindo para pressionar nossos governantes a tomar atitudes e decisões que favoreçam a conservação do planeta, a sobrevivência da biosfera e nossa própria. Não se trata de ação partidária, para impedir ecos indevidos nesse país em que hoje vivemos. Agir politicamente é agir como cidadão. A palavra ‘política’ vem do grego polis, o que sugere que ser cidadão é discutir os problemas de nossa cidade, para nós hoje, nosso mundo, e agir em relação a eles. Qualquer um faz e deve fazer política, e isso não implica agenda partidária alguma, ao menos não necessariamente. Como a palavra “cidadão” se tornou desgastada, de tanto ser usada sem significado claro, devo dizer como a entendo, na esteira do que diz Henry Giroux: um cidadão é um agente moral e político que possui um sentido compartilhado de esperança e responsabilidade em relação aos outros, não somente em relação a si mesmo.

Para dar apenas mais uma sugestão, esta relativa a como educamos nossos filhos e filhas: propiciem a eles experiências de natureza! Levem-nos a restingas, florestas, praias conservadas, caatingas, cerrados, campos rupestres, não deixem que cresçam achando que leite se faz na prateleira do supermercado, ou sem saber que sem abelha não tem fruta, legume ou vegetal! Uma série de estudos tem mostrado que experiências de natureza são importantes preditores de uma atitude pró-conservação, esta de que tanto necessitamos se formos mesmo sobreviver. A separação das pessoas em relação à natureza, nos ambientes urbanos, mas também em ambientes rurais degradados, explica em boa parte a dificuldade que muitos enfrentam para entender o quadro geral em que nos encontramos, o estado do planeta e as atitudes e decisões que ele de nós demanda. Não deixem que suas filhas e filhos se somem à multidão dos desconectados da natureza. Ou que se somem aos consumidores e propagandistas da desinformação!

Charbel N. El-Hani

Instituto de Biologia/UFBA

PARA SABER MAIS:

Bruner, A. G., Gullison, R. E. & Balmford, A. (2004). Financial costs and shortfalls of managing and expanding protected-area systems in developing countries. BioScience 54: 1119-1126.

Ripple, W. J. et al. (2017). World scientists’ warning to humanity: A second notice. BioScience 67: 1026-1028.

Steffen, W. et al. (2015). Planetary boundaries: Guiding human development on a changing planet. Science 347: 1259855.

WWF (2018). Relatório Planeta Vivo.

Imagem de abertura: Modelo de limites planetários. Figura reproduzida de artigo de W. Steffen e colaboradores, de 2015, Planetary boundaries: Guiding human development on a changing planet.

Tem uma mosca na minha ferida!

Para a maioria das pessoas, as moscas causam apenas uma reação: nojo. De fato, não há como negar que esses insetos sejam asquerosos. Eles entram em seu lixo, passeiam pelo esgoto e cadáveres –como discutido em um texto recente do Darwinianas– e regurgitam em tudo. Por causa dessas excursões por locais peculiares, ficam cobertos de bactérias e outros patógenos para depois andar com suas patinhas sujas por toda a sua comida. Pois é, as moscas são realmente nojentas, mas é justamente a atração desses insetos por material em decomposição que faz com que suas larvas sejam benéficas para a saúde humana.

Feridas crônicas podem se desenvolver em pacientes com diversas condições, como diabetes ou doença vascular, por exemplo. Essas feridas podem ter tecidos necrosados e infectados, e muitas vezes se tornam úlceras sem cicatrização –desesperadamente desagradáveis ​​para os pacientes que sofrem com elas. Em muitos casos, essas feridas podem piorar e resultar na amputação de partes ou mesmo de membros inteiros. No entanto, a aplicação de larvas (esterilizadas) pode reverter esse quadro. Quando todos os outros tratamentos falham, larvas de moscas em seu primeiro instar (larvas recém-nascidas) podem transformar, em poucos dias, uma úlcera estagnada em uma ferida limpa e saudável em processo de cicatrização. Esse tratamento alternativo é chamado de terapia larval, biocirurgia ou larvoterapia. A terapia larval é uma opção de atraente de desbridamento (remoção do tecido necrótico e outros resíduos de uma ferida) porque as larvas utilizadas para fins clínicos comem apenas tecidos mortos e deixam o tecido vivo intacto. Todos os outros procedimentos de desbridamento inevitavelmente destroem parte do tecido vivo.  

O uso de larvas para o desbridamento de feridas difíceis e crônicas não é uma ideia nova. Os aborígines australianos já usavam larvas para limpar feridas há séculos, mas as larvas passaram a ser apreciadas universalmente somente após algum tempo, quando os cirurgiões militares notaram que os soldados com feridas infestadas por larvas apresentavam uma melhor e mais rápida recuperação. Ambroise Paré foi um cirurgião-barbeiro que serviu no exército francês e fez um dos primeiros relatos sobre o benefício das infestações durante a batalha de St. Quentin, em 1557. Em 1829, o cirurgião de campo de Napoleão Dominique Larrey também observou os efeitos benéficos das larvas em ferimentos sofridos por soldados durante uma expedição à Síria. Ele notou que as larvas que se desenvolviam em ferimentos sofridos em batalha impediam o desenvolvimento de infecções e aceleravam a cura. Não há evidências, no entanto, de que Paré ou Larrey tenham introduzido larvas nas feridas de seus pacientes deliberadamente. Isso só aconteceu quando John Forney Zacharias, um cirurgião de Maryland durante a guerra civil americana, iniciou oficialmente a terapia com larvas, que ele explica ter salvado muitas vidas. Mais tarde, durante a Primeira Guerra Mundial, William Baer observou que as larvas auxiliavam na cicatrização de feridas e desenvolveu com sucesso um método para produzir larvas esterilizadas que não disseminariam infecções. A terapia foi amplamente utilizada até depois da Segunda Guerra Mundial, quando houve a descoberta de antibióticos e o desenvolvimento de melhores técnicas cirúrgicas, que deixaram as larvas em segundo plano, utilizadas apenas como último recurso.

O interesse renovado na terapia larval foi desencadeado com ocorrências generalizadas de “superbactérias”, resistentes a diversas classes de antibióticos. Por exemplo, a bactéria que ocorre mais comumente em feridas, Staphylococcus aureus, adquiriu resistência à meticilina em 1961, dois anos após sua introdução como substituto da penicilina. A evolução da resistência a antibióticos levou a um aumento do tempo de hospitalização e tratamento de pacientes com feridas crônicas. Como resultado, desde 1990, as larvas voltaram a ser utilizadas no tratamento de certas feridas que, de outra forma, seriam intratáveis. ​​Suas secreções são eficazes mesmo contra S. aureus resistente a antibióticos. As célebres larvas também atuaram no filme Gladiador (2000). Em uma das cenas, o protagonista desmaia após ser ferido em uma batalha e, quando ele acorda, encontra sua ferida cheia de larvas aplicadas por um amigo. As larvas limparam a ferida também na versão cinematográfica da terapia larval. Em 2004, o FDA (“Food and Drug Administration”) aprovou o uso de larvas estéreis em aplicações médicas nos Estados Unidos.

As larvas usadas na terapia geralmente pertencem a espécies de moscas varejeiras (apresentadas em texto sobre Entomologia Forense aqui no Darwinianas), como a Lucilia sericata. No Brasil, larvas de Cochliomyia macellaria também estão sendo testadas para o mesmo propósito. Essas larvas alimentam-se exclusivamente de material orgânico em decomposição e se afastam de uma ferida quando há apenas tecido saudável. Elas também são fáceis de cultivar em condições estéreis e são relativamente resistentes (podem ser resfriadas e armazenadas a 5°C). Cerca de 10-20 larvas esterilizadas são aplicadas por centímetro quadrado de ferida. Como as larvas de moscas são altamente móveis, há necessidade de contê-las em um curativo especial que lhes permite alcançar o tecido a ser tratado, mas impede que saiam da ferida. O progresso do tratamento é verificado diariamente, e as larvas são trocadas pelo menos a cada três dias por causa de seu rápido crescimento e ciclo de vida curto em temperaturas corporais humanas.

As larvas limpam o tecido necrótico com uma grande velocidade, apesar de não possuírem dentes. Elas secretam enzimas proteolíticas digestivas para liquefazer o tecido necrosado que servirá para sua alimentação. Juntamente com as enzimas, as larvas secretam outras moléculas com papel ativo na cicatrização da ferida: fatores estimulantes do crescimento celular, fatores antimicrobianos e fatores antiinflamatórios. A rápida melhora no quadro se dá então pelas diferentes atuações da larva na ferida. A alimentação competitiva das larvas das moscas varejeiras remove rapidamente a fonte de alimento das bactérias e muitas delas são digeridas no processo. A remoção do tecido morto também permite uma melhor difusão do oxigênio nos tecidos saudáveis, o que impede a proliferação de bactérias anaeróbicas. Elas também secretam fatores antibacterianos e antifúngicos  eficazes contra inúmeros patógenos, incluindo cepas resistentes a antibióticos. Além de combater a infecção, as secreções larvais também induzem a migração de fibroblastos, proliferação e remodelação do tecido, acelerando a recuperação. Finalmente, as larvas podem promover o crescimento do tecido por meio da estimulação física do tecido da ferida. O movimento ajudaria o fluxo das secreções das larvas e a quebra mecânica do tecido morto.

Todos esses processos se tornaram alvos para desenvolvimento de produtos biotecnológicos. Max Scott, da North Carolina State University, por exemplo, aposta na nova geração da terapia larval, combinando a atividade das larvas na ferida à atuação do fator de crescimento humano derivado de plaquetas (PDGF). Ele e sua equipe geraram uma linhagem de L. sericata transgênica que produz e secreta o fator de crescimento humano. O PDGF estimula a sobrevivência celular, a proliferação de fibroblastos e a quimiotaxia, reorganização da actina e produção e secreção de outros fatores de crescimento. Sua produção torna a larva ainda mais eficiente no desbridamento. Mesmo os estudos básicos sobre a biologia e evolução do hábito alimentar em Calliphoridae realizado pelo nosso grupo, em colaboração com a Profa. Patrícia J. Thyssen na Universidade de Campinas, contribuem para a compreensão dos mecanismos moleculares subjacentes às preferências alimentares e dinâmica na ferida. Ensaios de preferência alimentar nos permitem escolher, dentre as espécies de Calliphoridae, aquelas que se alimentam exclusivamente de tecido necrosado, sem invadir o tecido sadio, enquanto nossa análise da expressão gênica nas larvas pode revelar proteínas secretadas com potencial terapêutico. Essas proteínas larvais podem ser estudadas para o desenvolvimento de pomadas para desbridamento, sem a necessidade da aplicação das larvas, que ainda encontra uma certa resistência de profissionais de saúde e do público em geral. Enquanto as pomadas não chegam ao mercado, as larvas funcionam como dispositivos médicos em miniatura com o poder de ajudar a curar e livrar muitos da carga dolorosa e incapacitante de feridas crônicas.

Tatiana Teixeira Torres (USP)

Para saber mais:

– Masiero FS, Martins DS e Thyssen PJ (2015) Terapia Larval e a aplicação de larvas para cicatrização: revisão e estado da arte no Brasil e no mundo. Revista Thema, 12(01): 4-14.

Nesse artigo, os autores revisam a literatura sobre terapia larval, apresentando a aplicação de larvas como alternativa para cicatrização de feridas. Um dos objetivos dos autores é desmistificar a modalidade terapêutica e estimular profissionais da saúde a aplicá-la em larga escala.

– Sherman RA (2014). Mechanisms of Maggot-Induced Wound Healing: What Do We Know, and Where Do We Go from Here? Evidence-Based Complementary and Alternative Medicine, 2014: 592419.

Revisão dos estudos clínicos controlados que testaram a eficácia da terapia larval. Pelos dados clínicos levantados há consenso de que o uso das larvas é efetivo no desbridamento. As evidências clínicas para a cicatrização acelerada de feridas são escassas, mas estudos clínicos pequenos sugerem fortemente que as larvas realmente promovem o crescimento de tecidos e cicatrização de feridas.

– National Geographic (2012) Maggot Medicine.

Programa mostrando a utilização da terapia larval. O vídeo contém cenas reais de larvas sendo aplicadas em uma ferida. Essas cenas podem ser desagradáveis para alguns espectadores.