Ciência na prática: Uma oportunidade de aprendizagem “Mãos na massa” por meio da Ciência Cidadã

Já dizia Paulo Freire “(…) ensinar não é transferir conhecimento, mas criar as possibilidades para a sua própria produção ou construção”. Estudos revelam que a Ciência Cidadã é uma dessas possibilidades, podendo ser usada no ambiente escolar e universitário para promover engajamento com a ciência e atitudes positivas em relação à ciência e ao meio ambiente.

Imagens do Guardiões da Chapada em ação em escolas nos municípios de Lençóis e Mucugê, Bahia (fotos da autora)

É inegável que a ciência está passando por uma crise de confiança nesse começo de século XXI. Os dados da pesquisa realizada pelo Instituto Gallup, em 2019, encomendada pela organização britânica Wellcome Trust, mostram que 75% dos brasileiros entrevistados nessa pesquisa responderam que desconfiam da ciência e 23% consideram que a produção científica pouco contribui para o desenvolvimento econômico e social do país. Quais as explicações possíveis para essa falta de confiança das pessoas na ciência?  Especialistas apontam diversas causas, dentre elas, falta de investimentos em uma educação científica crítica desde a educação básica e/ou disseminação de informações falsas, que confundem deliberadamente as pessoas, em nome de interesses escusos, e/ou a atual crise de legitimidade institucional, com as pessoas deixado de acreditar nas instituições republicanas, e a ciência entrando nesse bojo.

As consequências negativas da ausência de valores próprios do pensamento científico são sentidas pelo número cada vez maior de pessoas que acreditam em pseudociências e teorias da conspiração e que se deixam enganar por notícias falsas. A desinformação é ainda mais preocupante quando diz respeito a determinados temas relacionados à saúde pública, como podemos ver, no presente, no aumento da parcela da população que resiste à vacinação.  No tocante às questões ambientais, a desinformação também impede que as pessoas enxerguem as relações de interdependência dos seres humanos com o mundo natural. No caso das plantas, por exemplo, a cegueira em relação à forma como elas se reproduzem e sua importância em nossas vidas faz com que as pessoas não se incomodem com a perda da biodiversidade vegetal, provocada por ações humanas, como queimadas e desmatamentos, levando-as a ignorar ou apoiar tomadas de decisão não qualificadas que poderão afetar seriamente as nossas vidas e das gerações futuras.

Em artigo publicado aqui no blog, Charbel N. El-Hani e Tiago Guimarães consideram que a crise de confiança na ciência tem a ver, ao menos em parte, com o modo como ensinamos ciências às pessoas. Na avaliação desses colegas, “se as pessoas entendessem mais sobre o que é a ciência e como a ciência funciona, o conhecimento científico poderia ser usado de forma mais justa e proveitosa”. Eles também sugerem que “não precisaríamos nos preocupar com a desinformação, pois as pessoas filtrariam esses documentos falsos, reconhecendo-os pela falta de marcas evidentes das práticas científicas”. Em outra postagem, El-Hani chama a atenção para o fato de que ensinar como a ciência funciona não consiste em ensinar métodos e fazer experimentos. Para isso, é necessário adotar um conjunto de estratégias e ações que aproximem o estudante das práticas científicas.

A Ciência Cidadã (CC) tem potencial para ser utilizada no ambiente escolar e universitário como uma dessas estratégias. Mas antes de começarmos a discutir como a CC poderia ser incluída como ferramenta na educação científica, é importante saber de qual (ou quais) CC estamos falando, pois esse é um termo cuja definição varia bastante entre as diferentes áreas do conhecimento e regiões geográficas. Aqui estamos adotando uma definição ampla e abrangente, proposta pela Rede Brasileira de Ciência Cidadã, que inclui (…) ”uma gama de tipos de parcerias entre cientistas e interessados em ciência, para produção compartilhada de conhecimentos com potencial para promover: o engajamento do público em diferentes etapas da prática científica;  a educação científica e tecnológica, e  co-elaboração e implementação de políticas públicas sobre temas de relevância social e ambiental”. Essa definição abarca, assim, uma  série de iniciativas ao longo de um espectro entre  as duas visões da Ciência Cidadã, a do filósofo e sociólogo inglês Alan Irwin, que define ciência cidadã como “ciência democrática”, e a do zoólogo Rick Bonney, que usa o termo  para descrever projetos em que o público se envolve ativamente na investigação científica e na conservação ambiental, o que ele chama de “ciência participativa”.

Dada a pluralidade conceitual, as iniciativas de CC podem ser classificadas de diferentes modos: pelo tipo/nível de colaboração entre cientistas e público interessado em ciência; pela forma de participação na coleta de dados em programas de monitoramentos e inventários da biodiversidade; pelo grau de contribuição do projeto para a ciência; quanto à natureza ou ao tipo de atividade a ser realizada; pelo nível de participação do cidadão voluntário, interessado em ciência, na pesquisa científica; e quanto aos objetivos do projeto de ciência cidadã. Em relação à participação, os projetos contributivos e colaborativos são os mais comuns e, em geral, de maior interesse da comunidade científica, podendo ser acessados em diversas plataformas, como por exemplo iNaturalist, Zooniverse e SibBr. Já os projetos co-criados, embora menos numerosos e em menor escala, possuem maior relevância social.

Mas, independentemente da tipologia, estudos revelam que a participação em projetos de ciência cidadã proporciona aos estudantes um ambiente favorável para o engajamento com a ciência, levando à melhor compreensão da diversidade da pesquisa científica e do pensamento científico, e promovendo atitudes positivas em relação à ciência e ao meio ambiente. Muito embora os projetos colaborativos contribuam mais para aprendizagem de conteúdos específicos e para aumentar o interesse nesses conteúdos, os projetos co-criados contribuem mais para o desenvolvimento de habilidades para a investigação científica.

No escopo do INCT IN-TREE, alguns projetos de CC estão sendo conduzidos, dentre eles, os projetos Guardiões da Chapada e Guardiões dos Sertões de Sergipe. Em linhas gerais, os “Guardiões” são projetos colaborativos de ciência cidadã que envolvem voluntários no monitoramento participativo da interação planta-visitante em ambientes naturais, urbanos e agrícolas, por meio do registro fotográfico das interações.

Apesar das especificidades de cada projeto “Guardiões”, no que diz respeito aos locais de atuação, aos tipos de ambientes monitorados e às ações que desenvolvem, eles têm em comum o fato de estarem  baseados em três pilares, que coexistem e interagem entre si de forma harmoniosa, organizados em duas dimensões, educacional e científica, quais sejam: 1) Produção colaborativa de informações de base científica, por meio do monitoramento participativo, que permite gerar novos conhecimentos sobre a biodiversidade; 2) Tradução e compartilhamento dos conhecimentos relacionados aos projetos ou gerados por  estes;  3) Despertar da cidadania científica e ambiental, por meio de ações voltadas à capacitação, ao desenvolvimento de habilidades e ao engajamento em ações de conservação.

Na dimensão científica do projeto, a colaboração entre cientistas e interessados em ciência envolve a coleta de dados das interações por meio do registro fotográfico. As fotos podem ser tiradas com uma câmera fotográfica, com o celular ou com o tablete e enviadas diretamente para uma plataforma online E-Guardiões da biodiversidade, ou por meio do aplicativo “Guardiões da Biodiversidade”, desenvolvido para dispositivos móveis, já disponíveis para IOS e Android, o qual permite também registrar as interações em tempo real. As fotos tiradas, com as respectivas informações, são armazenadas em um banco de dados, onde especialistas poderão acessá-las e fazer a identificação dos animais e de plantas e complementar a descrição da interação planta-visitante, se for necessário. Com todos esses dados, será possível, por exemplo, mapear novas ocorrências de espécies, avaliar o efeito das mudanças ambientais sobre as espécies, desenvolver diretrizes para manejo e conservação da vida silvestre, e planejar o uso sustentável da terra na região. Como um projeto científico, os projetos “Guardiões” devem produzir dados e informações científicas genuínas, que possam gerar novos conhecimentos. Nesse sentido, esses projetos buscam aliar relevância e rigor por intermédio da parceria entre cientistas profissionais e demais atores sociais. A parceria com cientistas ajuda a aumentar a confiança e a credibilidade nos dados, enquanto a parceria com os atores sociais aumenta a relevância e o impacto social dos resultados.

No ambiente escolar e universitário, a dimensão científica dos projetos “Guardiões” pode ser explorada para colocar os estudantes em contato com a prática científica e a natureza da ciência, estimulando o estudante a formular questões situadas na sua realidade local e a discutir os resultados das pesquisas. As questões podem variar conforme o perfil e nível de escolaridade dos estudantes, o que fica a cargo do professor, que deve fazer as adequações que julgar necessárias.

Na dimensão educacional, os temas centrais dos projetos Guardiões podem ser contextualizados por situações ou problemas socioambientais, locais ou regionais, como, por exemplo, desmatamento; queimadas; uso de agrotóxicos; produção de alimentos; pragas e doenças de cultivos agrícolas; declínio de polinizadores; qualidade do ar e da água; arborização em espaços urbanos e bem-estar humano; mudanças climáticas e a biodiversidade; espécies invasoras, dentre outros. Dessa maneira, podem contribuir para tornar os conhecimentos escolares mais significativos para os estudantes. Essas situações-problemas poderão mobilizar tanto conhecimentos científicos quanto outros tipos de conhecimentos, necessários para busca de soluções, o que favorece uma aprendizagem multidimensional dos conteúdos, que permite ao estudante, além de compreender conceitos e princípios técnicos e memorizar fatos e evidências, também exercitar procedimentos e ações práticas e vivenciar e refletir sobre situações concretas, do mundo real.

Ao relacionar os conceitos científicos aprendidos em sala de aula às questões científicas relevantes para a vida das pessoas, ou sejam, às questões sociocientíficas, os projetos Guardiões também contribuem  para aproximar a escola/universidade do seu entorno, promover uma educação científica crítica dos estudantes, desenvolver novas habilidades e competências, despertar novos talentos para a carreira científica, e construir os valores necessários para tomada de decisões responsáveis sobre questões relacionadas às relações entre ciência e tecnologia na sociedade e no ambiente (CTSA).

Contudo, existem desafios para implementar projetos de CC nas escolas, dentre eles, a necessidade de capacitação dos professores, bem como dos cientistas, para co-produção e condução dos projetos; adaptação do projeto aos currículos e processos avaliativos; dificuldades para garantir a qualidade dos dados coletados pelos estudantes, bem como para análise e interpretações dos resultados; e falta de recursos financeiros contínuos para garantir a sustentabilidade do projeto e o tempo de professores e pesquisadores para dedicação aos projetos. Por sua vez, esses desafios podem ser em parte solucionados pelo estabelecimento de parcerias entre Universidade-Escola, entre professores de diferentes disciplinas e, se possível, entre as escolas ou universidades e diferentes setores da sociedade; pela formulação de objetivos científicos e educacionais claros e protocolos simples, adequados ao perfil e nível de escolaridade dos estudantes; por ações que incentivem a participação dos estudantes e dos professores desde o início do projeto; pela transparência e compartilhamento dos resultados; e por atividades que visem manter engajamento, interesse e motivação de todas as partes interessadas no projeto.

Buscando contribuir para superação desses desafios, os projetos “Guardiões” vêm construindo parcerias com instituições de ensino, organizações não-governamentais e coletivos para o desenvolvimento de ações educacionais.  Na Bahia, o Guardiões da Chapada tem atuado nos municípios de Lençóis, Mucugê, Ibiocoara e Piatã no âmbito de uma Ação Curricular em Comunidade e Sociedade (ACCS), componente curricular, na modalidade disciplina, que visa ampliar a possibilidade e a qualidade de participação pública em temas relacionados ao uso e à conservação da biodiversidade e dos serviços ecossistêmicos, instrumentalizando os atores sociais para intervirem melhor nos processos decisórios relacionados à conservação ambiental; contribuir para a formação de profissionais comprometidos e engajados com a solução dos problemas ambientais; e estimular a autonomia e criticidade dos participantes, na busca de soluções sistemáticas para problemas socioambientais. Em Sergipe, as ações do Guardiões dos Sertões acontecem por intermédio de parcerias construídas pelo projeto  “Protagonistas da Escola Verde: experiência de aprendizagem em ecologia e educação científica no ensino médio”, que articula a Universidade Federal de Sergipe, escolas da educação básica, gestão pública e comunidade em geral em prol de avanços na discussão de temas relacionados à ética, à biodiversidade e aos serviços ecossistêmicos, no contexto do semiárido sergipano, com abordagem participativa. Interessados em conhecer essas ações podem visitar as nossas páginas nas redes sociais e/ou entrar em contato com os coordenadores dos projetos “Guardiões” através do e-mail guardioeschapada@gmail.com

Blandina Viana

Universidade Federal da Bahia

Para saber mais:

Bonney, R. et al. Can citizen science enhance public understanding of science? Public Understanding of Science, v. 25, n. 1, p. 2–16, 2015.

Kelemen-Finan, J.; Scheuch, M.; Winter, S. Contributions from citizen science to science education: an examination of a biodiversity citizen science project with schools in Central Europe. INT J SCI EDUC. 2018; 40(17): 2078-2098

Viana, BF; Souza, CQ. Ciência cidadã para além da coleta de dados. Revista ComCiência – Revista eletrônica de jornalismo cientifico, Labjor, UNICAMP, p. 1 – 2, 05 out. 2020.

Viana, BF.2020.  Meliponicultura e Ciência Cidadã: o que elas têm em comum?. Revista Mensagem Doce, n. 151

No Mundo Invertido: genética e evolução das inversões cromossômicas

As inversões cromossômicas são de grande interesse na biologia pois estão comumente associadas à origem de inúmeros fenômenos, como organização social, adaptação ambiental, isolamento reprodutivo e até especiação. Duas características fazem delas instrumentos eficazes para adaptação local: envolvem muitos genes e reduzem drasticamente a permutação quando estão em heterozigose. Juntas, essas características produzem um cenário favorável para a disseminação de genes envolvidos na adaptação local em populações naturais.

Por volta de 1915, na famosa sala das moscas da Columbia University, pesquisadores perceberam que alguns estoques de Drosophila melanogaster apresentavam uma taxa de permutação (“crossing-over”) muito menor que a esperada. Alfred Sturtevant propôs que havia fatores supressores da permutação e, por meio de cruzamentos e contagem de mutantes de D. melanogaster, observou que a ordem dos genes nos estoques com diferentes taxas de permutação também era diferente. Essa observação o levou a concluir que os fatores inibidores de permutação eram inversões de regiões dos cromossomos. Foi então levantada uma hipótese para explicar essa observação: a permutação era impedida pois os cromossomos homólogos não poderiam se emparelhar na região invertida durante a meiose. A hipótese foi logo descartada após a observação do emparelhamento (em forma de alça, figura 1) em milho e em cromossomos politênicos de Drosophila. O emparelhamento ocorre e a permutação também ocorre, mas os produtos recombinantes tornam os gametas inviáveis na grande maioria das vezes e, por isso, não são observados indivíduos gerados por esses gametas (figura 1).  

Figura 1. Esquema mostrando os dois tipos de inversão cromossômica, ambas em heterozigose, e os gametas resultantes da permutação. (A) a porção cromossômica invertida pode não incluir o centrômero (inversão paracentromérica). Neste caso, a permutação dá origem a uma cromátide sem centrômero e outra com dois centrômeros. Cromátide sem centrômero não fica ligada às fibras do fuso e não é puxada para os pólos da célula durante a divisão meiótica. Por outro lado, a cromátide com dois centrômeros é puxada para os dois pólos e se rompe. Essas cromátides recombinantes não geram gametas viáveis. (B) Se a inversão inclui o centrômero (inversão pericentromérica), a permutação leva a criação de cromátides recombinantes que ou não possuem todos os genes, ou cromátides com genes duplicados, que por sua vez não formam gametas viáveis. Reproduzido de Moore JA (1986) Science as a Way of Knowing – Genetics. American Zoologist, McLean, 26, 583-747 [texto traduzido e adaptado pelos docentes da disciplina Genética (E.J.C. de Almeida; J.M. Amabis; M.L. Benozzati; B.C. Bitner-Mathé; E.M. Dessen; C.F.M. Menck; L. Mori; C.R. Vilela & Y.Y. Yassuda), do IB-USP, em 1995; revisado em 2021].

A supressão da permutação durante a meiose (ou melhor, a supressão da produção de gametas recombinantes) e, consequentemente, do rearranjo de alelos, pode dar origem a supergenes que “prendem” alelos de diferentes genes juntos em grandes regiões cromossômicas. Quando as inversões capturam alelos de diferentes genes que conferem maior aptidão, essas variantes invertidas rapidamente se tornam mais frequentes nas populações. Muitas delas explicam o surgimento de diversos fenótipos, como, por exemplo: diferenças reprodutivas e de comportamento em machos da ave combatente, Philomachus pugnax; coloração e comportamento no pardal-de-garganta-branca, Zonotrichia albicollis; ciclo de vida, morfologia e tempo de floração em Mimulus guttatus; ecologia e morfologia do peixinho esgana-gata, Gasterosteus aculeatus; formas de organização social na formiga-de-fogo, Solenopsis invicta; e resistência a inseticidas em Anopheles arabiensis. Um exemplo de como as inversões facilitaram a disseminação de alelos de resistência a inseticidas foi descrito em mosquitos do gênero Culex.  Os alelos que conferem resistência são deletérios quando estão em homozigose e adaptativos em heterozigose. Esses alelos podem ser potencialmente mantidos em um estado heterozigótico por meio da presença de inversões. Muitas dessas inversões segregam dentro das espécies por centenas de milhares ou mesmo milhões de gerações. Por exemplo, uma inversão de 900 kb no cromossomo 17q21.31 de humanos é observada em europeus e alguns asiáticos (haplótipo H2). Os dois haplótipos, H1 e H2, que divergiram há três milhões de anos, são anteriores ao surgimento do homem moderno e até mesmo à origem do gênero Homo. A explicação mais empregada para a longa retenção de polimorfismos de inversão é a seleção balanceadora.

A espécie de borboleta Heliconius numata tem um dos exemplos mais fascinantes de variação fenotípica associada a inversões. A espécie apresenta sete padrões de asa, mimetizando sete espécies do gênero Melinaea, outro grupo de borboletas, mais tóxicas para seus predadores (figura 2). As sete diferentes formas de H. numata podem aparecer um uma única população. Essas diferentes formas são resultado de vários rearranjos no cromossomo 15. A inversão inicial, denominada supergene P, oferece vantagens por meio do mimetismo e provavelmente entrou na população por meio de hibridação com a espécie Heliconius pardalinus. Após o rearranjo inicial, a região cromossômica não permaneceu estática. Outras duas inversões ocorreram em regiões adjacentes ao supergene P, dando origem a novos haplótipos (alelos de locos adjacentes que são herdados como uma unidade) e novos padrões de asa. A arquitetura do supergene é caracterizada por um bloco não recombinante que captura 21 genes distintos envolvidos no padrão de asa, que são conhecidos por se recombinarem em outras espécies do grupo. Nas espécies relacionadas H. melpomene e H. erato, há vários locos independentes (e em cromossomos distintos) envolvidos no padrão de asa.

Figura 2. Cada uma das formas polimórficas de H. numata mimetiza espécies diferentes do gênero Melinaea (painel superior). Cada forma é controlada por um alelo do supergene P, com dominância crescente mostrada da esquerda para a direita (painel central). Em todas as outras espécies estudadas no gênero Heliconius, o padrão das asas é controlado por vários locos de grande efeito em diferentes cromossomos, a exemplo de H. melpomene, mostrada no painel inferior. Figura reproduzida de Joron et al. (2011).

Mesmo conferindo uma grande vantagem seletiva, o supergene não foi fixado nas populações de H. numata após sua origem e pesquisadores mostraram no inicio deste ano por que isso acontece. O haplótipo seletivamente favorecido (com os alelos adaptativos dos diferentes genes ligados) se espalha pela população, mas, devido à falta de permutação, acumula uma série de mutações com padrão de herança recessiva que diminui a aptidão dos homozigotos (a relação entre a permutação e o acúmulo de mutações foi explorada em um post anterior, aqui no Darwinianas). Dentre as principais mutações observadas pelos pesquisadores, está o acúmulo gradual de elementos transponíveis de diferentes classes. Como consequência, os haplótipos não conseguem atingir a fixação, mas persistem na população, predominantemente em indivíduos heterozigotos.

Para testar o efeito das inversões nas borboletas, os autores analisaram a sobrevivência de larvas de cruzamentos de tipos diferentes sob condições controladas de laboratório. Eles observaram que a sobrevivência de larvas homozigotas para os rearranjos era muito reduzida: apenas 6,2% das larvas homozigota para uma das inversões secundárias e 31,3% homozigotas para a outra inversão secundária sobreviveram até o estágio adulto. Larvas heterozigotas com dois haplótipos diferentes mostraram uma recuperação na aptidão e sua sobrevivência era quase indistinguível daquela de larvas homozigotas para o arranjo ancestral (77,6% de sobrevivência). As inversões, portanto, abrigam variantes recessivas com um forte impacto na sobrevivência individual em homozigotos. Essa descoberta implica que os diferentes haplótipos invertidos não compartilham as mesmas mutações deletérias, mas, em vez disso, rearranjos subsequentes podem compensar as mutações que se acumularam ao longo do tempo. Consequentemente, novos rearranjos (ou eventos raros de recombinação dentro da região invertida) podem estender a vida do haplótipo. A baixa aptidão larval dos homozigotos também sugere que o potencial de qualquer um desses haplótipos se tornarem fixos é bastante baixo. Assim, a seleção é dependente da frequência, beneficiando haplótipos presentes em menor frequência. Como consequência, esse mecanismo garante que as diferentes inversões coexistam ao longo do tempo e também deve estar envolvido na manutenção de supergenes observados em outras espécies, como o pardal-de-garganta-branca e a formiga-de-fogo, mesmo com alta letalidade nos homozigotos.

Tatiana Teixeira Torres (USP)

Para saber mais:

– Mark Kirkpatrick (2010) How and Why Chromosome Inversions Evolve. PLoS Biology, 8, e1000501.

Revisão em inglês sobre processos com papel importante na evolução de inversões cromossômicas.

 – Maren Wellenreuther & Louis Bernatchez (2018) Eco-Evolutionary Genomics of Chromosomal Inversions. Trends in Ecology & Evolution, 33, 427-440.

Outra revisão, também em inglês, os autores trazem estudos recentes em genômica das inversões polimórficas em animais e plantas para detalhar as causas e consequências da persistência de inversões polimórficas na natureza.

 

 

A pandemia não acabou, que máscara devo usar para evitar a Covid-19?

Mais de 550 mil brasileiros já perderam suas vidas desde o início da pandemia por Covid-19. Novas cepas vêm preocupando autoridades de diversos países. Mesmo com a diminuição de casos, há grande preocupação com novas variantes no Brasil. Dessa forma, ainda é necessário o uso de máscaras de proteção para evitar contaminação pela Covid-19. Mas qual máscara devemos usar? Ainda não sabe ou tem dúvidas, fica com a gente aqui neste post que vamos falar um pouco sobre isso.

Aqui no Darwinianas já tratamos sobre vários aspectos da pandemia do novo coronavírus, SARS-Cov2. Em um post recente tratamos de uma nova possibilidade de vacina, através das vias aéreas superiores. Em outro post, tratamos sobre os movimentos anti-vacina. Caso ainda tenha dúvidas sobre a eficácia e o histórico sobre a vacinação, não deixa de ler esses textos. Felizmente, graças ao aumento do número de pessoas vacinadas, estamos observando uma redução importante no número de novos casos e de óbitos (Figura 1). Mesmo assim, a Fiocruz vem alertando sobre uma alta esperada devido ao inverno, estação do ano que historicamente registra maior incidência de doenças respiratórias. Nos EUA, depois de uma grande queda no número de novos casos e mortes relacionadas à COVID-19, infelizmente estamos observando aumento. Resumindo: ainda estamos em pandemia e todo o cuidado é pouco.


Figura 1 – Número de novos confirmados (A) e número de novos óbitos devido a Covid-19 (B) no Brasil. Fonte: Painel Rede Covida – Ciência, Informação e Solidariedade. Última Atualização: 29-07-2021 às 20:47h.Fonte de Dados: Ministério da Saúde e Secretárias Estaduaishttps://covid19br.wcota.me/.

Com as melhoras momentâneas, com a liberação de espaços públicos pelas autoridades e depois de tanto tempo de confinamento e distanciamento social, as pessoas de modo geral tendem a querer retomar as atividades sociais de modo bem intenso. Aqui em Salvador, por exemplo, podemos testemunhar praias lotadas neste final de semana, mesmo com ventos fortes e céu nublado. Desde o início da pandemia, muitas pessoas não têm usado máscaras, enquanto outras usam de modo equivocado, deixando o nariz e às vezes até a boca do lado de fora. Agora, com o aumento da vacinação e com a redução do número de casos, mais pessoas estão abandonando totalmente o uso de máscaras, o que não é uma decisão apropriada.

Outra questão diz respeito à escolha por máscaras adequadas. Muitas vezes há dúvidas sobre que tipo de máscara deve ser usada. As de pano, cirúrgicas ou de maior proteção, como a N95? Essa dúvida é genuína e há muita informação contrastante nas redes. Até pouco tempo havia falta de evidências empíricas sobre a efetividade e o risco de cada tipo de máscara como meio de evitar contaminação pelo SARS-CoV-2.

Hoje, sabemos com mais segurança que a transmissão da Covid-19 se dá majoritariamente por perdigotos e aerossóis. Sabemos também que as máscaras de proteção são importantes para prevenir que as pessoas contraiam a doença, reduzindo a inalação de partículas virais, mas também para que não a transmitam, reduzindo a sua emissão (ver abaixo em “Para Saber Mais”). Até então, na literatura científica, as evidências eram muito contrastantes sobre a efetividade do uso de máscaras na proteção contra o vírus. Por um lado, alguns estudos mostravam que a penetração viral pode ser considerável em máscaras cirúrgicas e até mesmo em máscaras de maior nível de proteção, como as PFF2 e as N95, e que, em casos de alta emissão de partículas, em espirros e tosse, aumenta a probabilidade de penetração de carga viral considerável através das máscaras. Além disso, em estudos clínicos, não se chegou a resultados conclusivos sobre a efetividade das máscaras contra a Covid-19. Por outro lado, diversas observações mostram que regiões ou instituições com alto percentual da população aderindo ao uso de máscaras têm melhor controle da doença. Em estudo recente publicado no dia 25 de junho de 2021, na revista Science, pesquisadores investigaram a efetividade das máscaras para proteção contra o vírus SARs-CoV-2, causador da Covid-19, utilizando modelos matemáticos.

Neste artigo, os autores desenvolveram um modelo quantitativo que estima a eficiência das máscaras, considerando a abundância de partículas virais no ambiente, ou seja, se o ar está muito “lotado” ou não de vírus. Os autores encontraram que a eficiência das máscaras depende profundamente da quantidade de vírus presente no ambiente (Figura 2). Por exemplo, em ambientes fechados, onde reconhecidamente há mais pessoas contaminadas, como em hospitais, as chances de contaminação são muito mais altas. Neste caso devemos procurar usar máscaras com menores taxas de penetração, como PFF2 e N95. Em ambientes abertos, com menos concentração viral, as máscaras cirúrgicas são mais efetivas, segundo o estudo.


Figura 2 – Representação esquemática de ambientes com alta (A) e baixa (B) abundância viral e eficácia das máscaras de proteção. Fonte: Imagem modificada do artigo Cheng e colaboradores (2021).

Agora você pode estar exclamando: “mas isso é obvio!”… será?! A partir dos resultados deste trabalho podemos medir um pouco melhor nosso comportamento e procurar mais proteção a depender do ambiente que estamos. Assim, podemos evitar custos excessivos com máscaras de altíssima proteção para frequentar ambientes abertos, com poucas pessoas, com distanciamento entre pessoas. Podemos também intensificar a proteção usando máscaras adequadas para ambientes fechados e com alta concentração de pessoas, o que aumenta por sua vez a probabilidade maior abundância viral.

O que era senso comum passou a ser evidência científica gerada por modelos matemáticos. O distanciamento físico entre as pessoas em ambientes abertos, associado a uso de máscaras, é ainda muito importante para barrarmos os avanços da pandemia, mesmo neste cenário atual, onde parte da população brasileira está vacinados. Não temos bola de cristal e não podemos prever o futuro, mas sabemos que cepas mais virulentas do vírus estão circulando em diversos países. Por isso, não custa muito continuarmos usando as máscaras de modo adequado.

Pedro Milet Meirelles

Laboratório de Bioinformática e Ecologia Microbiana

Instituto de Biologia da UFBA

meirelleslab.org

Para Saber mais:

Grinshpun, Sergey A., et al. “Performance of an N95 filtering facepiece particulate respirator and a surgical mask during human breathing: two pathways for particle penetration.” Journal of occupational and environmental hygiene 6.10 (2009): 593-603.

Chu, Derek K., et al. “Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis.” The lancet 395.10242 (2020): 1973-1987.

Zhang, Renyi, et al. “Identifying airborne transmission as the dominant route for the spread of COVID-19.” Proceedings of the National Academy of Sciences 117.26 (2020): 14857-14863.

Brooks, John T., Jay C. Butler, and Robert R. Redfield. “Universal masking to prevent SARS-CoV-2 transmission—the time is now.” Jama 324.7 (2020): 635-637.

Bico doce: a evolução da percepção de açúcar nas aves

Muitos animais, no qual eu me incluo, amam comidas doces. Outros, como gatos, golfinhos e a maioria das aves, são indiferentes. Nós, que amamos doces, sentimos a doçura dos alimentos quando moléculas de açúcares se ligam a receptores presentes nas papilas gustativas. O receptor que reconhece açúcares é produzido a partir de um gene chamado T1R2. Muitas espécies especializadas em uma dieta pobre em açúcares perderam esse gene durante a evolução e tornaram-se insensíveis ao sabor doce. As aves, por exemplo, que evoluíram de dinossauros carnívoros, não possuem o gene T1R2 em seu genoma. No entanto, todos sabemos que algumas aves tropicais, como os beija-flores, amam comer néctar, o líquido adocicado produzido pelas flores para atrair polinizadores.

Um estudo publicado em 2014, na revista Science, liderado pela ornitóloga Maude Baldwin, iluminou esse mistério. Mostrou que o receptor para o sabor umami, que normalmente se liga ao aminoácido glutamato e produz o sabor suave e duradouro de alimentos como shoyo, peixes e queijos, está modificado nos beija-flores para perceber açúcares. Ao contrário de uma galinha, que não tem preferência entre água pura ou água com açúcar, os beija-flores buscam freneticamente o dulçor do néctar, mas sem poder diferenciar entre os sabores doce e umami.

No entanto, os beija-flores só existem no continente americano. Em outros continentes, as aves que se especializaram em comer néctar são passeriformes, como os sunbirds e honeyeaters, e não são aparentadas aos beija-flores. Em um novo estudo, publicado na semana passada na revista Nature, o grupo de Maule mostrou que os passeriformes também usam uma modificação do receptor de umami, mas em outra parte da molécula, o que indica que a percepção de açúcar evoluiu independentemente nos dois grupos por meio de um truque similar. Além disso, o estudo mostrou que não só os passeriformes que comem néctar, mas todo o grande grupo dos oscinos, que contém quase a metade de todas as espécies de aves, são capazes de perceber o sabor doce usando o receptor de umami.

Além de esclarecer a origem do gosto por açúcar nos passeriformes, o trabalho mostra uma história evolutiva complexa. Os oscinos se originaram na Austrália e a presença de um receptor sensível a alimentos doces indica que o ancestral de todos eles era um pássaro que se alimentava na flora australiana, famosa por sua abundância de néctar, olores e sabores, e posteriormente deu origem a milhares de espécies com dietas variadas. A presença do receptor para o sabor doce em espécies que não têm dietas ricas em açúcares aponta para a importância da combinação de modalidades sensoriais para a seleção do alimento. A maioria das aves escolhe a comida primariamente orientada pela visão e não por acaso as espécies nectívoras buscam preferencialmente flores vermelhas. As papilas gustativas, que em aves são poucas e localizadas na parte posterior da boca, atuam mais na confirmação ou rejeição de alimentos. Por último, a preferência por cores brilhantes nas aves que se alimentam de frutas e néctar pode ser responsável por muito da beleza observada nessas aves, pois a preferência alimentar pelas cores vivas das flores e frutas maduras pode ter influenciado a seleção sexual de penas coloridas, resultando que muitas das aves de cores mais espetaculares são aquelas que amam a doçura.

João Francisco Botelho

(PUC de Chile)

Para saber mais:

Baldwin, Maude W., et al. “Evolution of sweet taste perception in hummingbirds by transformation of the ancestral umami receptor.” Science 345.6199 (2014): 929-933.

Toda, Yasuka, et al. “Early origin of sweet perception in the songbird radiation.” Science 373.6551 (2021): 226-231.

Quanto podemos suportar perder a Amazônia?

Temos visto com frequência nos noticiários que o desmatamento da Amazônia está aumentando e que isto está diretamente relacionado com as mudanças climáticas. Mas afinal como esses temas estão relacionados? O que temos a ver com isso? Estas e outras perguntas o Dr. David Lapola responde em entrevista exclusiva ao Prof. Pedro Meirelles aqui no Darwinianas.

Nesta entrevista, o Dr. David Montenegro Lapola fala um pouco sobre sua trajetória acadêmica e como sua infância o influenciou a trilhar seus passos profissionais. Dedicado a modelar como as mudanças climáticas afetarão o futuro da Amazônia, e consequentemente milhões de vidas humanas, David fala sobre aspectos básicos para compreendermos as mudanças climática, modelagem e os principais problemas que a Amazônia vem enfrentando.

David, é Pesquisador do Centro de Pesquisas Meteorológicas e Climáticas Aplicadas à Agricultura – CEPAGRI da Universidade Estadual de Campinas – Unicamp.

Quer saber mais sobre o que historicamente conhecemos e o que a ciência está debruçada para responder sobre esses temas? Não perca a entrevista na íntegra. Prepara um bom café, e aproveita!

Pedro Milet Meirelles

Laboratório de Bioinformática e Ecologia Microbiana

Instituto de Biologia da UFBA

meirelleslab.org

Para Saber mais:

Rammig, Anja, David M. Lapola, Patricia Pinho, Carlos NA Quesada, Irving F. Brown, Bart Kruijt, Adriano Premebida et al. “Estimating the likelihood of an Amazon forest dieback and potential socio-economic impacts.” In EGU General Assembly Conference Abstracts, p. 12619. 2018.

Fleischer, K., Rammig, A., De Kauwe, M.G., Walker, A.P., Domingues, T.F., Fuchslueger, L. and Lapola, D.M., 2019. Future CO2 fertilization of the Amazon forest hinges on plant phosphorus use and acquisition. Nature Geoscience12, pp.736-741.

Fleischer, K., Rammig, A., De Kauwe, M.G., Walker, A.P., Domingues, T.F., Fuchslueger, L., Garcia, S., Goll, D.S., Grandis, A., Jiang, M. and Haverd, V., 2019. Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition. Nature Geoscience12(9), pp.736-741.

O pato que pode não voar

No final do ano de 1832, Charles Darwin estava nas Ilhas Malvinas, no extremo sul do continente americano, quando escreveu em seu diário de viagem: “Nessas ilhas, um grande pato … é muito abundante… Suas asas são muito pequenas e fracas para permitir o voo, mas com sua ajuda, parcialmente nadando e parcialmente batendo na superfície da água, eles se movem muito rapidamente…. Esses patos desajeitados e cabeçudos fazem tanto barulho e respingos que o efeito é extremamente curioso.” Em seguida, reflete sobre duas outras aves que havia conhecido na sua viagem e que também não usavam suas asas para voar: emas e pinguins. A ideia de descendência com modificação começava a decolar na sua cabeça.

Embora todas as aves modernas tenham evoluído de ancestrais voadores, várias espécies não voam. Nossas emas, como observou Darwin, estão adaptadas à vida nos cerrados, caatingas e campos, onde correm com suas pernas fortes e asas pequenas. Pinguins “voam” debaixo d’água, com asas transformadas em nadadeiras, ossos pesados e penas que mais parecem escamas. Elas evoluíram de ancestrais voadores, há mais de 60 milhões de anos, e não possuem parentes próximos vivos que nos permitam investigar os detalhes da transição para uma vida longe dos céus.

Os patos que Darwin viu nas ilhas Malvinas oferecem um melhor caso para investigar essas transições. Eles são chamados de quetru (ketru significa pato na língua do povo mapuche) ou patovapor em espanhol e steamer em inglês (em referência aos antigos barcos à vapor com pás laterais). Existem quatro espécies, que pertencem ao gênero Tachyeres (Figura 1). O mais comum é T. patachonicus ou quetru voador, que habita todo o sul da América do Sul, incluindo rios e lagos do interior. As outras três espécies são costeiras e não voam: T. pteneres habita a costa do Chile, pelo lado do Pacífico, T. leucocephalus habita a costa atlântica da Argentina, e T. brachypterus habita as ilhas Malvinas e provavelmente foi a espécie que divertiu o jovem Darwin. As quatro espécies são muito parecidas, sendo difícil identificá-las na água. A principal diferença está no corpo menor e nas penas mais longas das asas e do rabo do quetru voador.

Figura 1: as quatro espécies de Tachyeres (modificado de birdsoftheworld.org).

Em 2012, Fulton e colaboradores compararam o DNA das quatro espécies e fizeram duas descobertas importantes. As espécies não-voadoras não estão mais relacionadas entre si, mas perderam a capacidade de voar independentemente, e indivíduos voadores encontrados nas ilhas Malvinas não são quetrus voadores (T. patachonicus), mas T. brachypterus capazes de voar. Quer dizer, a espécie que habita as ilhas Malvinas tem indivíduos voadores e não-voadores. Já se conhecia uma situação inversa, que alguns machos grandes de quetru voador (T. patachonicus), que habitam ilhas do extremo sul do continente, não são capazes de voar.

Esses dados confirmam dois aspectos importantes na transição evolutiva a espécies não-voadoras. Ela ocorre como um evento variacional em uma população com indivíduos voadores e não-voadores, e em um contexto ecológico que permite e facilita um modo de vida não-voador. Esse contexto é encontrado frequentemente em ilhas isoladas, sem mamíferos terrestres, quando colonizadas por espécies que não dependem do voo para se alimentar. O biguá das Galápagos e o Dodô da ilha de Maurício são dois exemplos famosos (ambas extintas com a chegada de humanos e animais domésticos às ilhas).

Patos têm ainda outra característica que pode facilitar a perda do voo. Asas possuem penas longas e assimétricas especializadas, chamadas de primárias, que a maioria das aves renova uma por vez para não perder a capacidade de voar. Patos renovam anualmente todas as penas primárias de uma vez e não podem voar por aproximadamente um mês. Isso é possível porque a maioria das espécies tem um estilo de vida que permite se alimentar e se proteger sem voar.  De fato, patos não voadores evoluíram outras vezes no arquipélago do Havaí (todas extintas recentemente) e em ilhas subantárticas ao sul da Nova Zelândia (duas espécies ameaçadas de extinção).

Mais recentemente, Campagna e colegas sequenciaram os genomas de 59 indivíduos das quatro espécies de patos em busca das causas da variação na capacidade de voo. Eles não encontraram regiões do genoma claramente associadas à perda do voo e reconheceram que a variação poderia não ser genética. Por exemplo, poderia estar associada à alimentação e aos seus efeitos no tamanho do corpo e comprimento das penas. Outra possibilidade é que as espécies não-voadoras tenham o desenvolvimento das asas atrasado, resultando em uma relação peso/área da asa insuficiente para voar no adulto.

Quase trinta anos depois de ver os patos quetrus pela primeira vez, Charles Darwin escreveu em a Origem das Espécies que “Quando vemos qualquer estrutura altamente aperfeiçoada para qualquer hábito em particular, como as asas de uma ave para voar, devemos ter em mente que os animais que apresentam graus de transição iniciais da estrutura raramente continuarão a existir até os dias de hoje”.  Os patos quetrus são uma dessas raras oportunidades para investigar uma transição evolutiva inicial. Embora ainda não exista uma resposta clara, os dados até agora indicam mecanismos variados, bem ao gosto do velho Darwin.

João Francisco Botelho (PUC de Chile)

Para saber mais:

Campagna, L., McCracken, K.G. and Lovette, I.J. (2019), Gradual evolution towards flightlessness in steamer ducks*. Evolution, 73: 1916-1926

Fulton, T. L., Letts, B., & Shapiro, B. (2012). Multiple losses of flight and recent speciation in steamer ducks. Proceedings of the Royal Society B: Biological Sciences, 279(1737), 2339-2346.

Livezey, B. C., & Humphrey, P. S. (1986). Flightlessness in steamer‐ducks (Anatidae: Tachyeres): its morphological bases and probable evolution. Evolution, 40(3), 540

Costela de Adão ou cromossomo de Eva? As diversas formas de se criar dois sexos distintos

A reprodução sexual surgiu há mais de 1,2 bilhão de anos, sendo quase universal entre os eucariotos. Seu papel principal é misturar o material genético de diferentes indivíduos. A reprodução sexual de muitos organismos multicelulares levou à evolução de gametas de diferentes tamanhos e à evolução de dois sexos distintos. Apesar do resultado da determinação sexual —diferenciação em machos ou fêmeas— ser muito conservada, os caminhos adotados por cada espécie podem ser muito diferentes.

A curiosidade sobre as origens dos diferentes sexos deve ser quase tão antiga quanto a nossa percepção das diferenças morfológicas entre machos e fêmeas. As explicações foram muitas ao longo do tempo. Aristóteles propôs que indivíduos do sexo masculino eram caracterizados pela abundância do elemento fogo, enquanto indivíduos do sexo feminino eram caracterizados pela abundância de água e, portanto, a temperatura determinaria o sexo. A partir disso, também foi proposto que os embriões que se desenvolviam no lado direito do útero, dito o lado mais quente, tornavam-se machos e aqueles que se desenvolviam no lado esquerdo, fêmeas. Passaram-se mais de dois mil anos até que Hermann Henking observasse, em 1891, um cromossomo com comportamento peculiar em um hemíptero (percevejos) do gênero Pyrrhocoris. Henking notou que algumas células continham 12 cromossomos e outras continham 11, o que parecia uma contradição ao conceito da constância do número dos cromossomos para uma dada espécie. O cromossomo, chamado de acessório posteriormente, era diferente. Ele era o único cromossomo não pareado na metáfase da meiose. Durante a anáfase, os cromossomos se dividiam (ou separavam-se), mas isso não acontecia para esse cromossomo, que se movia como uma única unidade para uma das duas novas células. Henkins se referiu ao cromossomo diferente como elemento X (elemento desconhecido), pois ele não sabia classificá-lo e não fez associação deste elemento com a determinação do sexo. Clarence Erwin McClung, Edmund Beecher Wilson e Nettie Maria Stevens foram os primeiros a propor que os cromossomos acessórios determinavam o sexo. Wilson e Stevens descobriram dois diferentes sistemas de determinação cromossômica do sexo, XX/XY e XX/XO. Logo o sistema de aves, borboletas e mariposas, ZZ/ZW, também foi descoberto, assim como sistemas sem nenhuma diferença aparente nos cromossomos. Ainda não se sabia, no entanto, o que tornava aqueles cromossomos especiais. Até a descoberta dos genes de determinação sexual.

Em organismos-modelo, a determinação sexual é iniciada por um gene principal que ativa a cascata de diferenciação em machos ou fêmeas (gene Sry em mamíferos, gene Sxl em drosófila, tra em diversos insetos e xol-1 em Caenorhabditis elegans, por exemplo). São genes que codificam fatores de transcrição que, quando expressos, ativam genes efetores que levam ao desenvolvimento de estruturas de machos ou de fêmeas. Os cromossomos do sexo heterogamético (aquele que possui dois cromossomos diferentes) evoluem a partir de autossomos que são inicialmente idênticos e param de recombinar após adquirir um gene de determinação sexual. Havendo recombinação entre os cromossomos, a seleção pode agir independentemente em cada mutação, mas na falta dela, há uma redução na eficiência da seleção que age no cromossomo inteiro (tema já discutido aqui no Darwinianas). Um efeito colateral comum da recombinação reprimida nos cromossomos Y e W, por exemplo, é a perda da maioria de seus genes. Isso acontece em inúmeros grupos animais, incluindo mamíferos, pássaros, cobras e insetos. Nos casos mais extremos, o Y ou W é totalmente perdido, resultando nos sistemas X0 (como grilos e gafanhotos, por exemplo) e Z0 (algumas mariposas).

Apesar dessas observações em muitos organismos-modelo, fica cada vez mais claro que diversos mecanismos para determinação do sexo evoluíram independentemente (como revisado por Bachtrog e colaboradores). Répteis como crocodilos e tartarugas e alguns peixes têm determinação sexual dependente de temperatura; larvas de um verme do gênero Bonellia só se desenvolvem como machos se tiverem o encontro com uma fêmea; algumas plantas e animais mudam de sexo durante sua vida em resposta a estímulos externos. A evolução desses mecanismos é tão rápida que é possível observar diferentes mecanismos atuando dentro de uma mesma espécie (em sapos e peixes, por exemplo). Na mosca doméstica, a determinação sexual é poligênica. Há um gene determinante do desenvolvimento de machos no cromossomo Y (fator M) e machos, em geral, são XYM e fêmeas são XX.  No entanto, foram observados machos XX em algumas populações. Esses machos carregavam uma cópia do fator M em um dos autossomos (AM).  

Em mamíferos, no entanto, com a observação de uma grande variedade de organismos, o sistema XY parecia ser conservado. Os cromossomos sexuais dos mamíferos evoluíram há mais de 150 milhões de anos a partir de um par autossômico no ancestral comum de mamíferos placentários e marsupiais. O cromossomo Y, por um lado, sofreu uma importante degeneração e menos de 5% dos genes permaneceram no cromossomo. Em roedores, dez genes são geralmente encontrados e apenas cinco genes são comuns a todas as espécies com cromossomos Y sequenciados (incluindo o gene Sry). O cromossomo X, por outro lado, tem mais de 90% de seu conteúdo gênico conservado em mamíferos. O roedor Microtus oregoni é uma rara exceção dentro do grupo. M. oregoni tem dois cromossomos sexuais, X e Y, que não são homólogos aos demais cromossomos sexuais de mamíferos. Curiosamente, número de cromossomos sexuais é diferente entre as células germinativas diplóides e as células somáticas e a distribuição dos cromossomos sexuais entre os tipos de células é invertida em machos e fêmeas: fêmeas têm cromossomos sexuais emparelhados nas células germinativas (2n = 18, XX) e não emparelhados em células somáticas (2n = 17, X0), enquanto os machos têm cromossomos sexuais emparelhados em células somáticas (2n = 18, XY), mas um único cromossomo desemparelhado nas germinativas (2n = 17, Y0). Assim, o macho produz gametas portando um cromossomo Y ou nenhum cromossomo sexual.

Para desvendar os mecanismos subjacentes a esse novo sistema de determinação, pesquisadores sequenciaram e montaram o genoma de M. oregoni. Esse genoma não continha um cromossomo homólogo ao Y de outros mamíferos, mas oito dos 10 genes observados no Y de roedores foram encontrados no cromossomo X montado de M. oregoni. A expressão desses genes era observada tanto em machos como em fêmeas, ao contrário de espécie irmã, Microtus longicaudus, cuja expressão era restrita aos machos. Ou seja, a reorganização do genoma de M. oregoni fez com que genes que estavam restritos aos machos por 150 milhões de anos passassem a ser expressos nas fêmeas!

Eles então fizeram um teste para estimar quantas cópias de cada tipo de cromossomo estavam presentes nos indivíduos. Para isso, quantificaram o número relativo de moléculas sequenciadas (cobertura) derivadas de autossomos e cromossomos sexuais em células somáticas de machos e fêmeas. Se as células somáticas de machos fossem XY e de fêmeas X0, seria esperado observar cromossomos sexuais com metade da cobertura de cromossomos autossômicos (já que as células somáticas possuem duas cópias de cada um deles). Como esperado, a cobertura do X em fêmeas era metade daquela observada para os autossomos, mas isso não foi observado para os machos. Neles, cobertura dos cromossomos sexuais não era diferente da cobertura dos autossomos. Essa foi uma das evidências que levaram à conclusão de que machos não possuíam um X e um Y, mas sim dois cromossomos X, um com herança paterna, XP, e outro com herança materna, XM.

O mecanismo de inativação de um dos cromossomos também foi observado nos machos, guardando muita semelhança com mecanismo de silenciamento do X extra de fêmeas de outros mamíferos. Em M. oregoni, a inativação não é aleatória. Em todos os casos, o cromossomo silenciado era o de origem paterna, XP. A presença de genes derivados de Y em ambos os sexos e a substituição do cromossomo Y ancestral por um segundo cromossomo X em machos de M. oregoni poderiam ser explicadas pelo movimento dos genes do Y para o X, seguido pela perda do cromossomo Y. Foram encontradas evidências de fusão do Y ancestral aos novos cromossomos XP e XM. Um outro resultado surpreendente foi a detecção de várias cópias do gene determinante do sexo maculino, Sry, no XM, com herança materna.

Esses resultados revelam um padrão de transformação de um cromossomo sexual que era anteriormente desconhecido nos mamíferos: M. oregoni perdeu seu cromossomo Y e machos possuem dois cromossomos X com pedaços do Y ancestral, XPXM. Surpreendentemente, genes ancestrais masculinos podem ser acomodados em genomas de fêmeas e indivíduos com cariótipo XM0 possuem cópias do gene determinante do sexo maculino, Sry, e expressão de genes derivados do Y. Esse é um mistério ainda a ser respondido: como esses indivíduos evitam a masculinização e se desenvolvem como fêmeas férteis? É possível que ainda encontremos outros sistemas surpreendentes de determinação sexual na natureza e eles poderão nos ajudar a compreender as mudanças cromossômicas subjacentes às diversas formas de se criar dois sexos distintos.

Tatiana Teixeira Torres (USP)

Para saber mais:

– Ilona Miko (2008) Sex chromosomes and sex determination. Nature Education, 1, 108.

Revisão em inglês sobre a descoberta dos cromossomos sexuais e uma breve descrição de mecanismos cromossômicos de determinação sexual em diversas espécies.

– Laura Hake & Clare O’Connor (2008) Genetic mechanisms of sex determination. Nature Education, 1, 25.

Nessa revisão, também em inglês, o foco está nos mecanismos moleculares de diferenciação sexual, com a descrição dos processos e genes envolvidos no desenvolvimento dos indivíduos dos diferentes sexos.

Crédito da imagem: “O cromossomo Y é pequeno em comparação com o X, mas é necessário para manter os níveis de alguns genes altos o suficiente para que os mamíferos sobrevivam”. ANDREW SYRED/SCIENCE SOURCE

Vai um cafezinho aí?

Quando ouvimos a palavra “café” muitas coisas vem à nossa cabeça, de modo geral coisas muito agradáveis, não é mesmo? Pode ser um ambiente acolhedor, um mimo de vó, uma conversa interessante em um ambiente agradável, o início de um dia. Aqui na Bahia, falamos com frequência: “vamos tomar um café lá em casa”, ao convidar uma amiga ou amigo para um encontro familiar. Só de pensar as vezes já podemos até sentir o aroma agradável. Pois é, o café está relacionado a rituais diários que muita gente. Esta infusão de cor escura, de aroma e sabor complexo, também está associada a produtividade e ao trabalho. Para fazê-la precisamos dos grãos torrados e moídos, mas de onde vêm esses grãos? Pois é, neste post vamos conhecer um pouco mais sobre as plantas que dão origem a esses grãos. Vamos lá?

Segundo o World Atlas, depois do petróleo o café é a segunda maior commodity a ser negociada. Esta informação é controversa, mas o fato é que mesmo não sendo a segunda, o café está entre as 5 primeiras commodities mais negociadas no mundo. Foi estimado que em 2016 aproximadamente US$ 19 bilhões foram movimentadas pelo seu comércio. O café é a terceira bebida mais consumida, água e chá são as duas primeira no ranking. Aproximadamente meio trilhão de xícaras são consumidas anualmente no mundo. O Brasil é responsável por cerca de um terço da produção de café anual (aproximadamente 2,5 milhões de toneladas métricas, sendo o maior exportador de café do planeta. Com mais de três bilhões plantas de café e com mais de cinco milhões de trabalhadores empregados nas atividades agrícolas, lideramos a produção de café há 150 anos. No Brasil mais de 1,8 milhões de hectares de terra são destinados ao cultivo do café gerando em 2019 uma receita de 19,3 bilhões de reais. Em Minas Gerais, Espírito Santo, São Paulo e Bahia está a maior parte da produção de café do País. A variedade arábica ocupa a maior parte da área plantada por café no Brasil, aproximadamente 1,5 milhões de hectares. É importante ressaltar que nem todo o café produzido no mundo é destinado a produção o consumo de café como bebida. Parte da produção é destinada à extração de cafeína para a produção de fármacos e estimulantes. Sem dúvidas, o café é muito importante para a economia global, para hábitos e rituais diários historicamente.  Mas… o que são essas variedades de café? Como podemos compreender melhor a sua diversidade, evolução e ecologia?

A planta do café pertence ao gênero Coffea, que tem mais de 120 espécies. A evolução deste gênero está associada à variação do tamanho do seu genoma e à pequenas alterações cromossômicas. As espécies mais conhecidas deste gênero são Coffea arabica, conhecida popularmente como “arábica” e Coffea cenephora, conhecida como “robusta”. Estas duas espécies são responsáveis por de 60 a 80% e 20 a 40% da produção mundial de café, respectivamente. Estudos apontam uma origem recente para a espécie C. arabica. Evidências moleculares relacionadas à distribuição geográfica atual indicam que esta espécie é fruto do cruzamento entre C. canephora e C. eugenioides. Hoje também utilizamos o conhecimento sobre as características das plantas para induzir o cruzamento entre plantas para melhoria da produção, dando origem ao que chamamos de variedades de café. Neste post aqui do Darwinianas, Ana Almeida explica a importância do cruzamento entre linhagens distintas para produção agrícola mundial. Para produtores e comerciantes de café essas variantes fazem toda diferença. Para muitos consumidores também, especialmente aos aficionados por cafés “especiais” (falaremos um pouco mais sobre isso ainda neste post). As variedades de café, apresentam cores, aromas e sabores muito diferentes. Algumas variedades são extremamente valorizadas, como por exemplo o café Blue Mountain, da Jamaica, por características própria das plantas, mas também por influência dos locais de plantio, que conferem características próprias aos frutos e consequentemente, aos grãos. Algumas variedades, no entanto, são mais valorizadas devido ao seu modo de produção. Um outro aspecto super importante para a biologia do café é a produção de cafeína (e seu efeito sobre a saúde humana), mas isso será assunto para um próximo post aqui no Darwinianas.

32

Figura 1 – Planta de café da espécie C. arabica florida (A) e com frutos (B). Créditos: A – Marcelo Corrêa e B – Forest & Kim Starr, ambas em https://en.wikipedia.org/wiki/Coffea_arabica.

Grãos de café podem ser extremamente caros. O café mais caro do mundo é o Black Ivory (Marfim Negro, na tradução literal, Figura 2), podendo custar R$ 18.254,70 o Kilo! Isso mesmo, mais de dezoito mil reais!!! Preço em reais baseado na cotação do dólar a 5,48 reais, no dia em que escrevo este post (24 de abril de 2021). Para produzir este café, coletores do norte da Tailândia buscam grãos de café arábica em fezes de elefantes. Os frutos do café são consumidos por elefantes e parcialmente digeridos, depois disso as sementes passam por um processo de lavagem e secagem, depois a torra, como nos outros tipos de café. Além de elefantes, outros animais também são usados para produzir café. O Kopi Luwak ou café civeta, é produzidos a partir das fezes da civeta na Indonésia. O café Jacu, é produzido a partir de fezes de aves Jacu, que vivem em regiões de Mata Atlântica, esse café é majoritariamente produzido no Espírito Santo, aqui no Brasil. A produção de café a partir de fezes de animais é controversa, pois muitas vezes envolve a manutenção de animais em cativeiros, muitas vezes sob mals tratos. Os elefantes da Tailândia são exceção, pois vivem em reservas, o que dificulta muito o acesso dos coletores às fezes, encarecendo o produto. 

4

Figura 2 – Frutos de café Black Ivory. Esses frutos foram coletados em fezes de elefantes no norte da Tailândia. Crédito: Blake Dinkin (https://en.wikipedia.org/wiki/Black_Ivory_Coffee)

Essa produção “peculiar” de café chama muito a nossa atenção, não é? Parece muito estranho consumir um produto que foi produzido a partir do cocô de animais. É fácil também termos um sentimento de empatia por esses animais selvagens “escravizados” em jaulas vivendo para comer e defecar, não é? Sim, mas isso também pode nos fazer pensar sobre duas coisas: 1) sobre como é o processo de produção de café e por quê fazemos questão de ter tanto trabalho para usar grãos defecados; e 2) sobre os possíveis impactos e soluções ambientais para um consumo de café mais sustentável e consciente.

Vamos começar pelas etapas de produção de café. Ao ser colhido, processo que demanda trabalho manual de milhões de trabalhadores, o café pode ser selecionado e então passa por um processo de secagem. Esse processo pode ser antecedido por um processo de remoção da polpa ou não. Os grãos secos então são armazenados, transportados e depois torrados para consumo. Aqui, não posso deixar de falar sobre o meu querido tema, a microbiota. Em diversas destas etapas sabemos que os microrganismos são fundamentais. Neste estudo, os autores abordam revisam o conhecimento atual sobre a diversidade microbiana (ou seja, microbiota ou microbioma) relacionado à produção de café. Neste post quero ressaltar que em diversas etapas da produção de café este conhecimento é muito importante. A figura 3 resume a cadeia de produção de café, da produção das sementes ao consumo. Entender como os microrganismos estão envolvidos no processo, levará ao entendimento de pontos críticos para controlar o processamento, manipulação da qualidade do café, o manejo de doenças e contaminação por fugos produtores de Ocratoxina A (ilustrado com estrelas).  Sabemos que a microbiota do trato digestivo de diversos animais é extremamente importante o processo digestivo, liberando uma série de enzimas e produzindo nutrientes. Isto não é diferente para a digestão de café produzido a partir da fermentação dentro do trato digestivo de animais, como o elefante e o jacu.

5

Figura 3 – Cadeia de produção do café. As estrelas representam pontos críticos para o estudo da microbiota. Figura adaptada de Vaughan e colaboradores, 2015.

A grande maioria do café produzido e consumido no mundo vêm de sistemas de agricultura intensiva de grande porte, em monoculturas de grandes propriedades, com alto consumo de água, de fertilizantes e defensivos agrícolas (conhecidos como agrotóxicos). Apesar de ter uma grande importância econômica e cultural, sabemos que essas práticas não são amigáveis à biodiversidade. Além disso, no Brasil, o grande centro produtor de café fica no Vale do Paraíba, centenas de milhares de hectares de Mata Atlântica foram derrubados para dar espaço à produção de café na década de 1830. Para abrir espaço para as plantações, os produtores na época usavam fogo, que na maioria das vezes era descontrolado (como o que observamos recentemente no Pantanal). Como consequência, por exemplo a cidade do Rio de Janeiro chegou a enfrentar problemas de abastecimento de água, pois as nascentes que ficavam na Floresta da Tijuca secaram. Hoje a supressão de mata nativa, seja Mata Atlântica ou Cerrado, não é mais um grande problema na produção de café, como é para produção de gado ou soja. Isso quer dizer que não há solução? Que você deve se sentir culpado por consumir essa infusão tão especial? De jeito nenhum. Há uma série de alternativas. O café pode ser produzido em sistemas de agroflorestas (SAFs), junto com outras plantas. O café sombreado é bem conhecido e extremamente valorizado. Existe um investimento grande em produção de cafés orgânicos e biodinâmicos, recebendo selos de sustentabilidade ambiental e responsabilidade social. Atualmente, grande parte desses cafés mais amigáveis a biodiversidade são exportados ou são classificados como “cafés especiais”, que ainda tem um custo elevado para a maioria dos consumidores brasileiros.

Beber café é uma tradição, é um ato que envolve uma atmosfera especial. Nós, entusiastas por café, podemos ser agentes influenciadores de mudanças importantes para a biodiversidade. Por exemplo, aumentar a demanda por produtos de qualidade pode impulsionar a redução de custos desses produtos. Podemos também podemos reduzir o consumo, muitas vezes excessivo, de cafés de baixa qualidade. Será que isso possibilitaria a conversão de áreas de agricultura intensiva para sistemas mais biodiversos?

Pedro Milet Meirelles

Laboratório de Bioinformática e Ecologia Microbiana

Instituto de Biologia da UFBA

meirelleslab.org

Para Saber mais:

Martins, Ana Luiza. História do café. Editora contexto, 2012.

Dados sobre a produção de café podem ser encontrados no Observatório do Café:  http://www.consorciopesquisacafe.com.br/index.php/consorcio/separador2/observatorio-do-cafe

A evolução da visão bilateral: quando cada olho passou a estar conectado aos dois lados do cérebro

Nossa percepção visual é tridimensional: largura, altura e profundidade. Distinguimos largura e altura de acordo com a posição da imagem de um objeto na nossa retina, e profundidade de acordo com a diferença de posição em cada olho. Coloque seu dedo na frente do rosto a quinze centímetros e feche um olho. Depois, abra esse olho e feche o outro, sem mover o dedo. O dedo parece se mover, pois está sendo visto de uma posição relativamente diferente. Quanto mais próximo do rosto, mais evidente esse efeito. Nosso cérebro usa essa diferença para criar a percepção de profundidade. Continue Lendo “A evolução da visão bilateral: quando cada olho passou a estar conectado aos dois lados do cérebro”

A origem e evolução do sexo nos eucariontes

A capacidade de realizar sexo é muito comum entre seres vivos. Quando teria surgido, na história da vida na terra? Uma forma de responder essa questão é investigar quais organismos carregam os genes essenciais para o sexo. Tais pesquisas trouxeram surpresas, revelando que mesmo entre organismos que não parecem recorrer ao sexo, a maquinaria genética para esse mecanismo está presente.

Você sabia que o sexo surgiu há mais de 1.2 bilhão de anos e é uma característica que já estava presente no último ancestral de todos os eucariontes (organismos que apresentam células com organelas e núcleo, no qual o DNA fica restrito)? Isso mesmo, o ancestral comum de animais, plantas, fungos, amebas, ciliados, e demais eucariontes, muito provavelmente já era capaz de realizar sexo, e essa capacidade foi herdada pelos diversos grupos de eucariontes viventes que conhecemos hoje. Mais que isso, muitos dos eucariontes que hoje são considerados assexuados são, na verdade, muito provavelmente capazes de realizar sexo, mas isso nunca foi observado por falta de estudos. Mas vamos por partes: neste post vamos entender o que é sexo do ponto de vista evolutivo, para então identificar algumas premissas que nos permitem estudar a origem e evolução desse mecanismo.   

Para começar precisamos definir o que é sexo. Simplificadamente, do ponto de vista evolutivo, sexo é entendido como um ciclo que envolve uma etapa de fusão nuclear (cariogamia) e uma etapa de meiose com recombinação gênica. É por meio desse ciclo que diversos grupos de eucariontes apresentam alternância de ploidia (número de cromossomos presentes em uma célula); enquanto a fusão nuclear leva a um aumento de ploidia a meiose gera uma diminuição (Figura 1). Vale ressaltar, que nesse contexto, sexo não é sinônimo de reprodução, já que em muitos eucariontes sexo não está diretamente vinculado a geração de um descendente; por exemplo, ciliados como o Paramecium aurelium realizam sexo em uma fase do ciclo de vida, enquanto se reproduzem por meio de divisão (fissão) celular em uma outra fase. A partir dessa definição de sexo podemos estabelecer algumas premissas necessárias para os estudos evolutivos.


Figura 1. Esquema ilustrativo da definição de sexo no contexto dos estudos evolutivos. Sexo é um mecanismo clíclico que envolve etapas de fusão nuclear e meiose. Para visualizar essa definição de sexo podemos considerar o exemplo da espécie humana. Nos humanos, sexo é a fusão dos núcleos de duas células gaméticas (óvulos e espermatozoides) haploides de 23 cromossomos (23C) que dá origem a um organismo com células somáticas diploides com 46 cromossomos (46C). Por sua vez, as células gaméticas haplóides (23C) são geradas a partir da diminuição de ploidia de células somáticas diploides (46C) por meio da meiose. Vale ressaltar que a recombinação gênica é um evento intrínseco à meiose, já que uma das etapas da meiose envolve o pareamento e permutação gênica crossing-over) entre cromossomos homólogos e outra envolve a reorganização de cromossomos maternos e paternos em uma nova combinação. Tal recombinação gênica contribui com o aumento da variabilidade genética, que é uma das consequências mais notórias do sexo.    

Duas premissas são centrais para estudar a origem e evolução do sexo: (i) A origem evolutiva do sexo em uma linhagem de organismos está vinculada à origem de aparatos moleculares (genes e proteínas) envolvidos com a cariogamia e a meiose; (ii) Os organismos sexuados devem ter em seus genomas genes que compõem aparatos moleculares envolvidos com a cariogamia e meiose. Dessas premissas deriva a seguinte constatação: a presença de aparatos moleculares específicos da cariogamia e meiose no genoma de um grupo de organismos sugere que esse grupo é capaz de realizar sexo. Nessa perspectiva, organismos assexuados não devem apresentar aparatos específicos da cariogamia e meiose. Logo, fica evidente a relevância de estudos comparativos para identificar e descrever os genes envolvidos na meiose e cariogamia dos diversos eucariontes sexuados.

Décadas de estudos com diversos eucariontes identificaram os genes que codificam as proteínas que compõem o aparato molecular necessário para o sexo (cariogamia + meiose). Desses estudos, estabeleceu-se uma lista de genes que são específicos para meiose e que são denominados de ‘kit de ferramentas da meiose’ (do inglês meiosis toolkit). Interessantemente, os genes do ‘kit de ferramentas da meiose’ são compartilhados por amebas, fungos, animais, plantas, ciliados, e vários outros grupos de eucariontes. Por conta disso, infere-se que o último ancestral comum de todos os eucariontes (o LECA, do inglês Last Eukaryotic Common Ancestor) já apresentava o ‘kit de ferramentas da meiose’ (Figura 2). Mais que isso, é do LECA que os diversos grupos viventes de eucariontes herdaram (e conservaram) o aparato molecular envolvido na meiose, assim como a capacidade de realizar sexo. Por sua vez, o aparato molecular envolvido na meiose com recombinação gênica evoluiu de um aparato ancestral que, em Archaeas, são responsáveis em reparar danos no DNA; a partir de genes ancestrais relacionados com o reparo de DNA, duplicações e diversificação gênica deram origem aos genes que compõem o ‘kit de ferramentas da meiose’.

Figura 2. Árvore simplificada da relação de parentesco entre o grupo dos eucariontes (laranja) e demais domínios da vida (Archaea e Bactéria). Atualmente, os eucariontes são classificados em vários grandes grupos, como as Archaeplastida, que inclui as plantas e diversas algas, Obazoa, que inclui os fungos, animais e diversos representantes unicelulares, e Amoebozoa, que inclui diversos grupos de organismos amebóides. Todos os grandes grupos de eucariontes apresentam linhagens de organismos que têm em seus genomas os genes do ‘kit de ferramentas da meiose’ (KFM) que estão envolvidos com o sexo. A partir disso, é possível inferir que o último ancestral comum de todos os eucariontes (LECA) apresentava os genes do ‘kit de ferramentas da meiose’ e provavelmente já era sexuado. Inferências atuais baseadas em análises de relógio molecular sugerem que o LECA viveu entre 1.2 e 1.9 bilhão de anos atrás, logo a origem dos genes que compõem o ‘kit de ferramentas da meiose’, assim como o sexo, ocorreu em um período anterior a esse. Os traços coloridos na figura representam genes que compõem o ‘kit de ferramentas da meiose’.

Disso tudo podemos tirar alguns aprendizados gerais: (i) No contexto evolutivo, sexo é definido como um ciclo composto por cariogamia e meiose; (ii) Infere-se que o último ancestral de todos os eucariontes (o LECA) já era sexuado; (iii) Dado um LECA sexuado, todos os grupos de eucariontes potencialmente herdaram o aparato molecular necessário para a realização de sexo e devem ser considerados sexuados até que se prove o contrário (Hofstatter e Lahr, 2019); (iv) Ser assexuado é uma característica secundária (derivada) de grupos de eucariontes que perderam a capacidade ancestral de realizar sexo. Corroborando essas conclusões, tem sido demonstrado que vários grupos de microrganismos eucariontes, tradicionalmente descritos como assexuados, apresentam em seus genomas o aparato molecular necessário para a meiose e cariogamia e são capazes de realizar sexo em alguma fase do seu ciclo de vida, o que não havia sido observado anteriormente por falta de estudos. Portanto, dado que “ausência de evidência não é evidência de ausência”, e que na perspectiva evolutiva o sexo é uma característica ancestral que foi conservada por diversas linhagens de eucariontes, podemos esperar que muitos outros organismos “assexuados” pouco estudados sejam futuramente demonstrados capazes de realizar sexo, sendo o sexo uma regra, e não uma exceção, na história evolutiva dos eucariontes.

Alfredo L. Porfírio de Sousa (USP)

Para saber mais:

 Ficou curioso em saber quais são os tais genes do ‘kit de ferramentas da meiose’ dos eucariontes e o contexto no qual foram relacionados a evolução do sexo? Indico uma olhadinha no artigo “Using a meiosis detection toolkit to investigate ancient asexual ‘scandals’ and the evolution of sex” (Schurko e John, 2008). Se quiser mais detalhes quanto ao ancestral de todos os eucariontes (o LECA) ser sexuado e o sexo ser bem mais comum em eucariontes do que imaginado antes, indico dar uma espiada nos artigos “Sex is a ubiquitous, ancient, and inherent attribute of eukaryotic life” (Speijer e colaboradores, 2015), “All Eukaryotes Are Sexual, unless Proven Otherwise” (Hofstatter e Lahr, 2019) e “The Sexual Ancestor of all Eukaryotes: A Defense of the ‘Meiosis Toolkit’” (Hofstatter e colaboradores, 2020).

 

Hofstatter, P. G., & Lahr, D. J. (2019). All Eukaryotes Are Sexual, unless Proven Otherwise: Many So‐Called Asexuals Present Meiotic Machinery and Might Be Able to Have Sex. BioEssays, 41(6), 1800246.

Schurko, A. M., & Logsdon Jr, J. M. (2008). Using a meiosis detection toolkit to investigate ancient asexual “scandals” and the evolution of sex. Bioessays, 30(6), 579-589.

Hofstatter, P. G., Ribeiro, G. M., Porfírio‐Sousa, A. L., & Lahr, D. J. (2020). The Sexual Ancestor of all Eukaryotes: A Defense of the “Meiosis Toolkit” A Rigorous Survey Supports the Obligate Link between Meiosis Machinery and Sexual Recombination. BioEssays, 42(9), 2000037.

Speijer, D., Lukeš, J., & Eliáš, M. (2015). Sex is a ubiquitous, ancient, and inherent attribute of eukaryotic life. Proceedings of the National Academy of Sciences, 112(29), 8827-8834.

Foto de capa: https://www.eurekalert.org/multimedia/pub/256910.php

%d blogueiros gostam disto: