Quer saber sua origem? Pergunte aos microrganismos e a Loki.

Num post aqui do Darwinianas, João Francisco Botelho falou sobre os microrganismos que habitam o corpo humano e explicou que através do desenvolvimento de técnicas de biologia molecular conseguimos acessar uma grande diversidade antes não conhecida de microrganismos difíceis de cultivar em laboratório. Neste meu primeiro post aqui do Darwinianas vou falar um pouco mais sobre uma dessas abordagens, a metagenômica, com a qual trabalho rotineiramente no meu Laboratório.

O termo “metagenômica” foi cunhado pela pesquisadora Jo Handelsman em 1998 e quer dizer “além do genoma”. A abordagem consiste basicamente em coletar amostras ambientais (por exemplo, de saliva humana a sedimentos de fossas marinhas abissais) e extrair e sequenciar simultaneamente o DNA de todos os microrganismos presentes nesta amostra. Com essas sequências em mãos podemos saber quem são os microrganismos presentes na amostra e o que eles potencialmente estão fazendo, pois podemos saber quais são os genes que estão presentes ali. Para fazer isso, os cientistas tinham que fragmentar o DNA metagenômico, colar em outros pedaços de DNA (por exemplo, plasmídeos) e inserir em bactérias para poder separar (ou isolar) os fragmentos, para depois disso dar significado biológico a essas sequências. Esse procedimento, era muito caro e laborioso, mas com os avanços tecnológicos hoje é possível “ler” uma quantidade extremamente maior de material genético, em muito menos tempo, a um custo muito menor.

Essa revolução tecnológica fez com que os bancos de dados de sequências crescesse muito, o número de genomas de referência (usados para dar significado biológico às sequências) também crescesse e novas abordagens e desafios fossem aparecendo. Com a massiva geração de novos dados, é possível reconstruir genomas inteiros a partir das sequências metagenômicas. A descoberta de alguns novos genomas tem contribuído muito para a expansão do conhecimento da biodiversidade e da e sobre as relações de parentesco entre os organismos. Ressalto aqui dois exemplos.

Em um trabalho liderado pela pesquisadora Jillian Banfield, centenas de novos grupos de bactérias extremamente pequenas e de biologia incomum foram descobertos em aquíferos contaminados por urânio através da reconstrução de novos genomas. Esses novos grupos (filos) representam uma expansão de 15% do da diversidade conhecida de bactérias e têm uma origem evolutiva comum. Esses microrganismos peculiares podem estar desempenhando funções importantes na ciclagem de matéria, por exemplo, de nitrogênio, carbono, enxofre.

Outro trabalho, liderado pelo pesquisador Thijs Ettema, analisou amostras de sedimento próximos a uma fumarola (chamada de “Castelo de Loki”, em homenagem ao deus nórdico de mesmo nome) a 2.383 metros de profundidade no Mar do Norte. A partir das sequências metagenômicas, os pesquisadores conseguiram montar novos genomas de microrganismos pertencentes a um novo filo do Domínio Archaea, Lokiarchaeota, em homenagem ao deus Loki. É muito interessante que estejam presentes nesses genomas recentemente descobertos vários genes considerados exclusivos de eucariotos. Esse novo filo “bagunçou” a árvore da vida, sugerindo que nós, eucariotos, somos fruto da evolução de uma célula arqueana que fagocitou uma bactéria.

Diversos grupos de pesquisa ao redor do globo vêm se dedicando a essas abordagens e milhares de novos genomas de microrganismos e vírus estão sendo recuperados de amostras disponíveis em bases de dados públicas, elucidando importantes questões científicas. Porém, os desafios são grandes. É necessário um grande poder computacional e habilidades de programação para analisar volumes tão grandes de dados em tempo hábil. Só para se ter ideia, o sequenciamento de uma amostra metagenômica pode gerar um arquivo texto (composto apenas por “A”, T”, “C” e “G”, os nucleotídeos que constituem o DNA) de mais de 50 Gigabytes! As novas tecnologias e abordagens estão revolucionando a forma como estudamos a vida de maneira muito rápida, trazendo a possibilidade de fazer novas perguntas e avançar ainda mais na nossa compreensão da natureza, da diversidade da vida e do fazer científico.

Pedro Milet Meirelles 

Instituto de Biologia da UFBA

Figura de Capa: Representação do Deus nórdico Loki, que inspirou a nomeação de um grupo de microrganismos que podem fornecer pistas sobre nossa origem evolutiva (Fonte: https://norse-mythology.org/gods-and-creatures/the-aesir-gods-and-goddesses/loki/).

Para Saber mais:

Anantharaman, K., Brown, C. T., Hug, L. A., Sharon, I., Castelle, C. J., Probst, A. J., et al. (2016). Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat. Commun. 7, 13219. doi:10.1038/ncomms13219. (https://www.nature.com/articles/ncomms13219)

Brown, C. T., Hug, L. A., Thomas, B. C., Sharon, I., Castelle, C. J., Singh, A., et al. (2015). Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 523, 208–211. doi:10.1038/nature14486. (https://www.nature.com/articles/nature14486)

Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J., and Goodman, R. M. (1998). Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5, R245–9. (https://www.cell.com/cell-chemical-biology/pdf/S1074-5521(98)90108-9.pdf)

Parks, D. H., Rinke, C., Chuvochina, M., Chaumeil, P.-A., Woodcroft, B. J., Evans, P. N., et al. (2017). Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 903, 1–10. doi:10.1038/s41564-017-0012-7. (https://www.nature.com/articles/s41564-017-0012-7)

Roux, S., Brum, J. R., Dutilh, B. E., Sunagawa, S., Duhaime, M. B., Loy, A., et al. (2016). Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537, 689–693. doi:10.1038/nature19366. (https://www.nature.com/articles/nature19366)

Spang, A., Saw, J. H., Jørgensen, S. L., Zaremba-Niedzwiedzka, K., Martijn, J., Lind, A. E., et al. (2015). Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179. doi:10.1038/nature14447. (https://www.nature.com/articles/nature14447)

De humanos a formigas: o ínfimo infinito

Na interface entre o indivíduo e o coletivo existimos. Dificilmente seríamos viáveis em isolamento social. Se vez em sempre desejamos a paz das montanhas, a quietude de um por de sol, ou a solenidade de um céu carregado de estrelas, o estar apenas conosco trazendo ganhos de entendimento sobre nós mesmos, o mesmo não vale para uma vida inteira.

Crescemos sociais em vários níveis, seja no interior da família, das amizades concretas, da vizinhança, num crescente vertiginoso até o todo fora das amizades virtuais: onde quer que estejamos, podemos mesmo dizer que não estamos sós nunca, haja visto o esforço que requer a meditação, o treino intenso para amainar essa gritaria interna do mundo de vozes que nos pensa.

Continue Lendo “De humanos a formigas: o ínfimo infinito”

Interruptores moleculares e a diversidade das espécies

Ao olhar a diversidade dos organismos, naturalmente nos questionamos sobre a origem da riqueza das formas, dos tamanhos, das funções. Esta, no entanto, não é uma pergunta nova. Charles Darwin, assim como muitos antes dele, fez este mesmo questionamento e propôs que todas as espécies estão relacionadas umas às outras em uma única filogenia. Mas mesmo após seu trabalho, e por grande parte do século 20, pouco se sabia sobre as bases moleculares das diferenças entre as espécies.

François Jacob, um dos cientistas que construíram o primeiro modelo explicativo da regulação da transcrição, disse em uma de suas entrevistas que, quando iniciou sua carreira em biologia, nos anos 1950, a ideia predominante para explicar essas diferenças era de que as moléculas de um organismo eram diferentes das moléculas de outro organismo. Por exemplo, “vacas teriam moléculas de vacas, cabras teriam moléculas de cabras e cobras teriam moléculas de cobras”. 

Continue Lendo “Interruptores moleculares e a diversidade das espécies”

Sociedades individuais de indivíduos sociais

Apesar de nos sentirmos muitas vezes como gênios incompreendidos, nossa genialidade está no conjunto, que no mais das vezes é mais que a soma das partes

Ao invés de nos vangloriarmos de nossa inteligência pessoal, dos grandes gênios de nossa cultura, Darwin, Einstein, Machado de Assis, talvez ganhássemos mais se percebêssemos que gênios nascem onde são semeados, e que uma boa colheita requer muito investimento contínuo, em uma escala de tempo histórica.

Continue Lendo “Sociedades individuais de indivíduos sociais”

Dois cérebros para pensar: a evolução da inteligência em aves e mamíferos

Assim como nós, primatas, algumas aves brincam, resolvem problemas, usam ferramentas, aprendem a cantar e se reconhecem no espelho. Este nível de sofisticação comportamental, ausente em outros animais, evoluiu independentemente nas linhagens das aves e dos mamíferos. Quais mudanças no cérebro estão subjacentes à sua evolução? Continue Lendo “Dois cérebros para pensar: a evolução da inteligência em aves e mamíferos”

Para genomas, tamanho é documento?

Há 50 anos, pensava-se que a quantidade de DNA em um genoma tinha uma correlação positiva com a complexidade de um organismo, ou seja, quanto mais complexa fosse uma espécie, mais DNA era necessário para armazenar aquelas informações que seriam traduzidas em fenótipos hierarquicamente mais complexos. O que pensamos hoje dessa ideia? Continue Lendo “Para genomas, tamanho é documento?”

O sono da civilização

Retrospectiva 2017

Darwinianas

De criança, sonhava sempre. Sonhos elaborados, com começo meio e fim, animados, e emocionantes, como um cinema mudo colorido onde tudo é em primeira pessoa. Assim como os filmes hoje em dia, meus sonhos vinham também em uma sequência progressiva de histórias concatenadas. Voar, por exemplo, era tema frequente, e o fim do sonho de ontem era, invariavelmente, o começo do de hoje, e assim voava cada dia mais alto, mais longe, e mais seguro, nestas minhas lições noturnas de autonomia.

Ver o post original 1.408 mais palavras