Agressividade, docilidade e domesticação: O que o genoma das raposas-vermelhas tem a nos dizer?

Cientistas sequenciam o genoma da raposa-vermelha (Vulpes vulpes) e de linhagens de raposas dóceis e agressivas em busca de regiões do genoma relacionadas a esses comportamentos.

No final da década de 1950, um geneticista russo iniciou um experimento fascinante: buscando entender as bases genéticas da domesticação e o papel do cruzamento seletivo nesse processo, Dmitry Konstantinovich Belyaev produziu inúmeras gerações de raposas em seu laboratório, no Instituto de Citologia e Genética em Novosibirsk, na Antiga União Soviética. Partindo de raposas-vermelhas selvagens (Vulpes vulpes), D. K. Belyaev e outros pesquisadores selecionaram por meio de cruzamento seletivo três populações distintas de raposas. Raposas que apresentavam comportamento dócil em relação aos seres humanos cruzaram entre si, gerando, ao longo de muitas gerações, uma população de raposas dóceis. Raposas agressivas em relação aos humanos cruzaram entre si, gerando uma linhagem de raposas agressivas, enquanto um terceiro grupo cruzou ao acaso, não sendo submetido a cruzamento seletivo. Esse famoso experimento de domesticação de raposas vermelhas está em operação até os dias de hoje, resultando no cruzamento seletivo de mais de 50 gerações de raposas de comportamento dócil, e mais de 40 gerações de raposas de comportamento agressivo (Figura 1). Continue Lendo “Agressividade, docilidade e domesticação: O que o genoma das raposas-vermelhas tem a nos dizer?”

Financiamento da ciência: dos impostos para a bancada

Nos últimos anos, cientistas brasileiros vêm alertando sobre cortes no financiamento à ciência e inovação no país. No final de 2017, uma petição com mais de 80 mil assinaturas foi entregue a representantes da câmara de deputados e do senado. A petição afirmava que os cientistas estão “mobilizados contra o desmonte que ameaça a universidade pública e a área de ciência, tecnologia e humanidades”. Ainda alertava que com “o menor orçamento dos últimos 10 anos e novos cortes de recursos e em programas de pesquisa sendo anunciados todos os meses, a sociedade brasileira está rapidamente perdendo sua estrutura de produção de conhecimento e formação profissional”. Quase um ano depois, recebemos a notícia de cortes orçamentários ainda mais profundos e, no dia 2 de setembro, assistimos à destruição do Museu Nacional do Rio de Janeiro, que tinha um papel fundamental na construção e divulgação do conhecimento científico gerado no país. Os últimos acontecimentos reacenderam a discussão do investimento em ciência. A discussão, no entanto, seria enriquecida com uma melhor compreensão das formas de financiamento e sistemática para a distribuição de verbas.

Continue Lendo “Financiamento da ciência: dos impostos para a bancada”

Quando a evolução e a medicina se encontram

Populações africanas são as mais geneticamente variáveis do mundo. Infelizmente, essa alta variabilidade pode representar um problema para os indivíduos com ancestralidade africana, na hora em que eles precisarem encontrar um doador de medula óssea.

Todas as populações humanas são variáveis, pois os indivíduos diferem uns dos outros em seus genomas. Porém, a quantidade de variação genética não é a mesma em todas populações. Há algum tempo já se sabe que populações africanas são aquelas que possuem a maior variabilidade. Isso significa que os indivíduos africanos são, em média, mais diferentes uns dos outros do que aqueles de outras regiões. Consequentemente na África cada gene ocorre em mais “versões” (ou alelos) diferentes. Neste post vou apresentar uma ideia originalmente publicada por Noah Rosenberg e Jonathan Kang num artigo que mostrava que as diferenças nos níveis de diversidade genética têm implicações para além das questões acadêmicas, influenciando assuntos de relevância social.

Primeiro, cabe perguntar: o que determina a diversidade genética de populações humanas? Hoje em dia temos uma boa hipótese para explicar a distribuição mundial da variabilidade.  Com base em achados fósseis, estudos arqueológicos e análises genéticas, temos evidências de que nossa espécie se originou na África, e de lá se dispersou para o restante do globo. O êxodo da África teve como primeira parada o oriente médio, com subsequentes ocupações da Europa e da Ásia. A partir de lá, populações ocuparam regiões do Sudeste Pacífico, o Nordeste Asiático e finalmente a América.

Esses deslocamentos deixaram uma marca na variação genética de populações, pois quando populações saem de uma localidade e ocupam um novo território, apenas um subconjunto dos indivíduos se desloca para o novo local. Assim, parte da diversidade genética é perdida quando um novo território é ocupado. Isso explica porque a diversidade é maior na África, e torna-se progressivamente menor em populações mais distantes, que ocupam lugares longe da África, e cuja ocupação dependeu de sucessivas rodadas de deslocamentos populacionais. As populações menos variáveis do mundo estão na América, pois são aquelas que se originaram pela maior sucessão de migrações desde a África (Figura 1).

1fig2.jpg
Figura 1. Os círculos grandes representam populações e os pequenos círculos coloridos representam variantes genéticas. As setas indicam a direção de eventos de migração. Repare que à medida que populações se dispersam, ocupando novos territórios, parte da variação genética existente é perdida. Assim, populações que ocupam regiões mais remotas apresentam menos diversidade genética (veja a América, por exemplo).Figura de Rosenberg e Kang (2015).
Da diversidade à compatibilidade

Esse achado genético tem implicações para questões biomédicas. Para certas doenças humanas, incluindo vários tipos de câncer, o transplante de  medula óssea é uma solução. A medula óssea contém células que são capazes de produzir novas células sanguíneas. As células com esse potencial são chamadas de “células-tronco hematopoiéticas”. O transplante de medula consiste em transferir as células de um indivíduo saudável para um que possui alguma doença ou limitação na produção de células sanguíneas. Para que o transplante tenha sucesso, é necessário que as células de hospedeiro e do doador sejam semelhantes do ponto de vista imunológico (ou “compatíveis”), o que evita que o tecido transplantado seja rejeitado.

A compatibilidade imunológica é particularmente importante para um conjunto de proteínas envolvidas na resposta imune, chamadas de proteínas HLA. Havendo diferenças entre paciente e doador para os genes que codificam proteínas HLA, há imensas chances de o tecido transplantado ser rejeitado, ou de haver sérias complicações após o procedimento. Por causa disso, no processo de triagem de possíveis doadores, quatro genes HLA são cuidadosamente investigados, e o transplante ideal é aquele entre indivíduos idênticos para esses genes.

Não é fácil encontrar um doador e um receptor idênticos. São 4 genes que precisam ser iguais entre eles, e para cada gene todo nós carregamos dois alelos, um que herdamos de nossas mães e outro de nossos pais. Assim, deve haver uma correspondência perfeita entre genótipos formados por 10 alelos. Como há literalmente milhares de alelos para cada um dos genes HLA, a chance de se encontrar um doador idêntico em todos os genes ao paciente torna-se muito baixa. É por essa razão que a primeira opção para buscar doadores são os familiares do paciente: como eles compartilham ancestrais em comum, aumenta a chance de haver compartilhamento de alelos. Mas, caso não exista um doador apropriado entre os familiares, torna-se necessário procurar um doador não aparentado. É aí que entram os Registros de Doadores de Medula Óssea: grandes bases de dados com informações sobre o HLA de até milhões de doadores.

No Brasil o REDOME (Registro de Doadores de Medula Óssea) possui mais de 4 milhões de doadores registrados. Já no Estados Unidos o NMPD (National Marrow Donor Program) mantém o registro chamado “be the match”, com 16 milhões de doadores registrados. É nesses bancos que um paciente busca doadores com a combinação de genes HLA idêntica à sua. Quando há um doador compatível, ele é contactado para que as células hematopoiéticas sejam extraídas e o transplante realizado.

E é aqui que as questões de diversidade genética e de transplantes se encontram. Uma suspeita originalmente levantada por pesquisadores com base em modelagem de dados era a de que indivíduos de populações com muita diversidade genética teriam mais dificuldade em encontrar doadores. A lógica é relativamente simples: se na África há mais diversidade genética, cada indivíduo com ancestralidade africana poderá ter um de muitos tipos de genótipo HLA, dificultando que se encontre um doador idêntico a ele. Já em populações europeias há menos variação, e consequentemente há mais indivíduos geneticamente semelhantes. Isso aumenta a chance de se encontrar um doador apropriado. Assim, a maior diversidade genética em genes HLA de africanos pode potencialmente dificultar as chances de eles encontrarem doadores. A análise de dados do registro de doadores norte- americano, ilustrada na Figura 2, deixa clara essa dificuldade. Indivíduos norte-americanos que se identificam como “afro-americanos” tem têm uma chance de apenas 66% de encontrar um doador compatível em 7 entre 8 alelos HLA. Já um europeu tem 97% de encontrar alguém com esse nível de compatibilidade.

image1
Figura 2. As chances de encontrar um doador diferem dependendo da ancestralidade. Em verde está indicada a chance de um indivíduo encontrar um doador compatível (com 7 dos 8 alelos idênticos), em azul a chance dele não encontrar um doador. Os dados são para o registro de doadores dos Estados Unidos. A chance de encontrar doadores compatíveis é muito mais baixa entre africanos (http://blackbonemarrow.com/why-race-matters/).

E não é só a maior diversidade genética entre africanos que dificulta suas chances de realizar um transplante. Entre afro-descendentes nos Estados Unidos, a chance de localizar o potencial doador compatível é reduzida em relação àquela para europeus, assim como a chance de o possível doador estar em boa saúde, viabilizando o transplante. Esses fatores, não surpreendentemente, parecem resultar de diferenças na renda entre indivíduos de ancestralidade europeia e africana.

Diante desse quadro, o que fazer? Nos estados Unidos, grupos já se organizaram para divulgar entre afro-americanos a necessidade de aumentar o recrutamento para o registro de doadores, de modo dirigido a essa parcela da população. E no Brasil, onde estamos? No momento ainda estamos diagnosticando a magnitude do problema, realizando os primeiros estudos para avaliar se há diferença entre brasileiros com maior e menor ancestralidade africana na hora de encontrar um doador compatível. Esse é um trabalho que está sendo desenvolvido na USP, liderado pela pós-doutoranda Kelly Nunes.

Esse exemplo ilustra a interação entre aspectos aparentemente muito distintos de uma população: a sua diversidade genética, fatores sociais que influenciam o recrutamento, saúde e disponibilidade de doadores, e o consequente impacto desses fatores sobre a chance de um transplante ser realizado com sucesso. O conhecimento a respeito de um processo evolutivo, que resulta na perda de variantes genéticas à medida que populações migram, tem relevância direta para o planejamento de uma área de saúde pública. A diversidade genética das populações carrega uma marca de sua história evolutiva mas também influencia características socialmente relevantes, às quais precisamos ficar atentos.

Diogo Meyer (USP)

Para saber mais:

Noah A. Rosenberg and Jonathan T. L. Kang . 2015. Genetic Diversity and Societally Important Disparities GENETICS September 1, 2015 vol. 201 no. 1 1-12

Bergstrom T.C., Garratt R. J., Sheehan-Connor D., 2012 Stem cell donor matching for patients of mixed race. B.E.J. Econ. Anal. Policy 12: 30.

Prugnolle F., Manica A., Balloux F., 2005 Geography predicts neutral genetic diversity of human populations. Curr. Biol. 15: R159–R160.

A doce vida na colônia

Animais frequentemente apresentam algum nível de organização social, formando desde casais e famílias, até todos os coletivos que estudamos na escola primária: cardume, bando, alcateia, matilha, manada, etc. O nível mais derivado de organização social é chamado de eusocial e também tem alguns coletivos:  colmeias, para abelhas, e colônias, para formigas.  A principal característica das eusociedades é a separação entre indivíduos reprodutores, como as abelhas e formigas rainhas, e indivíduos estéreis, como as abelhas operárias e as formigas soldados.

Abelhas, formigas e marimbondos são insetos himenópteros que se tornaram eusociais independentemente. Eles evoluíram de ancestrais similares a vespas solitárias que, ao contrário da maioria dos insetos, cuidavam e alimentavam suas crias em ninhos. O primeiro passo evolutivo teria sido a manutenção de mais de uma geração de adultos no ninho, alguns colocando ovos e outros ajudando a criar as larvas. Esta organização ainda está presente em várias espécies de himenópteros. A eusocialidade teria evoluído quando a maturação sexual das gerações mais jovens foi reprimida, cabendo a um único indivíduo produzir todos os ovos.

Há muitos anos os pesquisadores sabem que a quantidade e qualidade da comida têm um papel importante na divisão entre reprodutores e estéreis. Larvas de abelhas alimentadas com geleia-real, por exemplo, se tornam abelhas rainhas. Mas quais são os mecanismos fisiológicos e moleculares que regulam a diferenciação?

Cientistas trabalhando nos Estados Unidos e na Alemanha compararam todos os genes expressados nos cérebros de indivíduos reprodutores e estéreis de sete espécies de formigas. Eles encontraram que a expressão de um único gene, uma das versões da nossa insulina em insetos, chamada de insulin-like peptide 2 (ilp2), estava aumentada nos indivíduos reprodutores em relação aos indivíduos estéreis das sete espécies analisadas. A insulina regula o metabolismo de açúcar e sua produção tem efeito direto no estado nutricional.

Os pesquisadores então escolheram estudar uma espécie de formiga que não possui formiga-rainha, mas na qual as formigas operárias alternam uma fase não-reprodutiva, em que alimentam as larvas, com uma fase reprodutiva, quando já não há mais larvas na colônia. Eles mostraram que a expressão de insulina em uma região do cérebro das formigas dependia da presença de larvas. Cada vez que as larvas eram retiradas da colônia, aumentava a expressão de insulina no cérebro, resultando na produção de mais ovos.  Também mostraram que, quando injetadas com insulina artificial, as formigas passavam a produzir ovos.

Ainda não se sabe como as larvas reprimem a produção de insulina nos adultos, levando à atrofia dos ovários. Mas como as condições nutricionais eram as mesmas, o resultado indica que a via de sinalização de insulina passou a ser usada para a comunicação entre larvas e adultos. Um hormônio que tinha uma função metabólica individual passou a participar na organização social, como se a colônia fosse um superorganismo composto não por células, mas por indivíduos.

A metáfora do superorganismo, explorada tantas vezes pelos estudiosos das eusociedades, ganhou ainda mais força com outro estudo recentemente disponibilizado em BioRxiv, mostrando que a geleia produzida por abelhas rainhas e operárias contém moléculas de RNA ativas que são passadas às larvas durante a alimentação.  Quando ingeridas, estas moléculas inibem a produção de certas proteínas até a vida adulta. Como as moléculas de RNA na geleia das operárias são diferentes das moléculas presentes na geleia produzida pelas rainhas, os autores sugerem que elas têm um papel na organização social da colmeia.

Durante a história da vida na terra, seres unicelulares originaram animais compostos por diferentes tipos celulares e cuja reprodução passou a depender de células especializadas. Nesta grande transição evolutiva a seres multicelulares, proteínas previamente existentes passaram a ser usadas para comunicação e adesão intercelular. A emergência de espécies eusociais mostra que neste jogo de reutilização de vias moleculares dá para ir ainda mais longe.

João F. Botelho (Yale University)

Para saber mais:

Chandra V, Fetter-Pruneda I, Oxley PR, Ritger AL, McKenzie SK, Libbrecht R, et al. Social regulation of insulin signaling and the evolution of eusociality in ants. Science. 2018;361(6400):398-402.

Maori E, Garbian Y, Kunik V, Mozes-Koch R, Malka O, Kalev H, et al. A transmissible RNA pathway in honey bees. bioRxiv. 2018.

Peters RS, Krogmann L, Mayer C, Donath A, Gunkel S, Meusemann K, et al. Evolutionary History of the Hymenoptera. Curr Biol. 2017;27(7):1013-8.

Afinal, quem são os “Wallys” no pequeno mundo dos microrganismos?

Neste post faço uma analogia ao famoso livro “Onde está Wally?” para ilustrar uma linha que vem crescendo a cada dia no estudo da diversidade microbiana: a biosfera rara.

No meu post anterior, falei sobre o “mar” de microrganismos. Falamos do quão importante os microrganismos são para os oceanos, para a ciclagem de nutrientes, nas cadeias alimentares e na saúde dos corais. Foquei especialmente em ambientes recifais, com os quais tenho grande afinidade e sobre os quais já desenvolvi alguns trabalhos. Neste post falarei sobre um assunto que vem me fascinando há um tempo e tem um pouco a ver com os novos microrganismos de que falei no meu primeiro post aqui no Darwinianas, microrganismos pouco abundantes (ou raros) e sua importância.

Antes de mergulharmos no assunto propriamente dito, é importante definir o que é, ou quais são os critérios que usamos para dizer se um microrganismo é raro ou não. Em uma revisão sobre o tema, os Professores Michael D. J. Lynch e Josh D. Neufeld apresentam algumas definições presentes na literatura, mas talvez a mais utilizada seja que os microrganismos que compreendem de 0,1% a 0,01% em uma determinada amostra (a depender da referência utilizada) compreendem a microbiota (ou biosfera) rara. Essa definição arbitrária e amplamente utilizada em diversos estudos é baseada em técnicas que usam sequenciamento de nova geração para “contar” as “espécies” ou Unidades Taxonômicas Operacionais (muito comum achar OTU, que vem da sigla em inglês) nas amostras. Um outro aspecto a ser considerado é considerarmos que, diferentemente de organismos que dependem de reprodução sexuada para aumentar suas populações, tendo necessidade de encontrar um par (também raro) para se reproduzir, microrganismos apresentam reprodução clonal. Ou seja, em situações favoráveis (por exemplo, oferta de recursos) a sua abundância pode crescer e muito.

Algumas estimativas indicam que grande parte dos microrganismos que existem na biosfera não são ainda cultivados e que são muito pouco abundantes. Conhecer essa enorme diversidade é super importante do ponto de vista da ciência básica, mas também de possíveis aplicação das suas funções metabólicas e ecossistêmicas para saúde humana e para questões ambientais como biorremediação, por exemplo. Ressalto aqui alguns exemplos de estudos empíricos que mostraram a importância da biosfera rara para alguns processos. Um estudo sobre o impacto do uso da terra sobre a diversidade microbiana no solo feito em plantações de dendê na Malásia mostrou que em florestas e ambientes com uso menos intenso do solo, microrganismos pouco abundantes são muito importantes para manter a estrutura da comunidade de microrganismos no solo. Possivelmente esses microrganismos possuem papéis cruciais para mobilização de matéria orgânica para todos os demais microrganismos, sendo chave para o funcionamento dos ecossistemas. Um outro estudo, através de experimentos de longo prazo em turfeiras, mostrou que que microrganismos raros são os principais responsáveis pela redução do enxofre nesses ambientes. Esse achado é importante, pois reflete diretamente no conhecimento que temos sobre o ciclo do carbono, especialmente na produção de metano (um dos principais gases para o efeito estufa) neste ambiente, uma vez que o metabolismo de enxofre tem impacto direto nas vias de produção e degradação de metano.

Voltando a analogia do Wally, ainda precisamos conhecer muitos “Wallys” nos microbiomas, mas já temos conhecimento sobre o papel e a importância deles nos ecossistemas.

 

Pedro Milet Meirelles

Laboratório de Bioinformática e Ecologia Microbiana

Instituto de Biologia da UFBA

meirelleslab.org

 

Para Saber mais:

Lynch, M. D. J., and Neufeld, J. D. (2015). Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol. 13, 217–229. doi:10.1038/nrmicro3400.

Wood, S. A., Gilbert, J. A., Leff, J. W., Fierer, N., D’Angelo, H., Bateman, C., et al. (2017). Consequences of tropical forest conversion to oil palm on soil bacterial community and network structure. Soil Biol. Biochem. 112, 258–268. doi:10.1016/j.soilbio.2017.05.019.

Kristensen, D. M., Mushegian, A. R., Dolja, V. V, and Koonin, E. V (2010). New dimensions of the virus world discovered through metagenomics. Trends Microbiol. 18, 11–19. doi:10.1016/j.tim.2009.11.003.

Pedrós-Alió, C. (2007). Dipping into the rare biosphere. Science (80-. ). 315, 192–193. doi:10.1126/science.1135933.

Pester, M., Bittner, N., Deevong, P., Wagner, M., and Loy, A. (2010). A “rare biosphere” microorganism contributes to sulfate reduction in a peatland. ISME J. 4, 1–12. doi:10.1038/ismej.2010.75.

Locey, K. J., and Lennon, J. T. (2016). Scaling laws predict global microbial diversity. Proc. Natl. Acad. Sci. 113, 5970–5975. doi:10.1073/pnas.1521291113.

(Imagem de abertura: https://findthething.wordpress.com/tag/find-wally-hidden-where-is-wally/)

A necessária morte da mística do DNA

O gene se tornou um ícone cultural seja nas escolas, na mídia, ou em escritos científicos. Ideias sobre o DNA que não se sustentam povoam nossos discursos. Já é tempo de deixá-las de lado.

Em sua análise do gene como um ícone cultural, a socióloga da ciência Dorothy Nelkin e a historiadora da ciência M. Susan Lindee analisaram a circulação do DNA e do gene em diferentes esferas da sociedade, analisando novelas, quadrinhos, propagandas e outras expressões da cultura de massas. Elas deixam às claras o que denominam uma mística do DNA, no modo como esta molécula e os genes que ela contém são representados na cultura popular. Segundo elas, enquanto a visão que acaba por chegar à cultura popular bebe nas ideias científicas para criar um discurso social sobre genes, ela escapa – como era de se esperar – às restrições de uma compreensão técnica desse conceito central da biologia. Todo mundo que já se deparou com um xampu que supostamente revitalizaria os cabelos por conter DNA sabe do que estamos falando. Evidentemente, o DNA não tem esse efeito sobre cabelos. O DNA entra aí como uma espécie de energia vital.

Este modo vitalista de pensar pode causar espanto há alguns. Afinal, ideias vitalistas, que atribuem os fenômenos vitais a uma espécie de energia que não poderia ser conhecida pela ciência, não são aceitas há muito tempo na Biologia e o DNA, decerto, não é equivalente a qualquer energia vital. E o pensamento vitalista foi superado na Biologia há um século, pelo menos. Contudo, na mística do DNA essas conotações vitalistas estão, elas próprias, muito vivas. As metáforas usadas para falar do DNA, seja na mídia, seja em livros didáticos, são muito claras. O DNA seria um “livro da vida”, uma espécie de essência definidora de nossa humanidade, até mesmo um Santo Graal, como escreveu o biólogo molecular Walter Gilbert, muito antes da decifração do genoma humano. O mesmo Gilbert que introduzia suas palestras sobre o sequenciamento genômico puxando um CD do bolso e anunciando ao público: “Isso é você” (como citado por Nelkin e Lindee em seu livro).

Esta é a mística do DNA. E ela segue bem viva entre nós. Está mais do que na hora, contudo, de decretar sua morte.

As conotações religiosas do discurso social sobre genes também são claras. Roxanne Parrott e colaboradores relataram que algumas pessoas que participaram de seu estudo acreditavam que Deus desempenha papel importante na expressão dos genes e em seu impacto sobre a saúde. O DNA passa a ser uma espécie de mediador ou mecanismo da vontade divina num pensamento fatalista que está presente em diferentes religiões. Por mais que alguém possa vislumbrar incompatibilidades entre esse modo de pensar e ideias científicas, a ciência escolar reforça tal visão na educação das pessoas, através de afirmações sobre genes e DNA que carregam tintas muito fortes, mas mal ficam de pé diante do que sabemos da biologia. Não são frases que encontraríamos somente na educação básica. Pensar isso é um ledo engano. Elas povoam as páginas inclusive de livros didáticos usados no ensino superior. Mas também não estão restritas a livros didáticos. Elas comparecem em textos de popularização da ciência e até mesmo em escritos científicos.

Aqui estão quatro exemplos: “O DNA é uma molécula que se autorreplica”. “O DNA controla o metabolismo celular”. “O DNA determina fenótipos”. “O DNA é um programa de desenvolvimento”. Todas estas são frases que não são compatíveis com o conhecimento biológico aceito, em alguns casos há décadas. Como disse o geneticista Richard Lewontin, determinismo biológico – certamente um dos aspectos dessas frases – não é sequer um problema filosófico. É somente biologia mal aprendida mesmo. Vejamos. 

A biologia do DNA

É bem sabido que a replicação do DNA depende de proteínas e RNAs que formam complexos envolvidos nas várias etapas desse processo. O DNA, portanto, não se autorreplica. O correto é dizer que sequências de nucleotídeos de DNA constituem moldes para sua replicação, o que é algo muito diferente da ideia de autorreplicação. Notem que, com esse termo, atribui-se a ação de replicar ao DNA, e não aos complexos de proteínas e RNAs, como é mais correto.

O DNA tampouco é uma molécula que controla a célula. O controle celular é, por assim dizer, democrático: ele não está concentrado em alguma molécula mestra, mas se encontra difuso por muitos nós da rede metabólica que constitui a bioquímica celular. O DNA é uma molécula relativamente inerte, que não comanda, controla, faz coisas com a célula, mas é usado pela célula por meio de redes complexas de interação molecular.

Fenótipos não são determinados por genes situados no DNA. Genes estão associados a fenótipos, sendo herdados como potenciais para seu desenvolvimento, mas a constituição de um fenótipo depende de processos complexos de desenvolvimento, no caso de organismos multicelulares, e da fisiologia de seres unicelulares. Pela mesma razão, o gene tampouco é um programa de desenvolvimento. Como uma simplificação, pode-se assumir, como no gene mendeliano, uma correspondência direta, de determinação, entre gene e característica, mas esta é uma suposição de um modelo que não trata o gene como uma entidade molecular, e sim como uma abstração (a exemplo do gene para cor dos olhos azuis, discutido em outra postagem de Darwinianas).

Estas frases, que atribuem um imenso poder ao DNA e aos genes nele contidos, somente poderiam ser corretas se o DNA fosse uma espécie de mini-consciência, um homúnculo a deliberar, por exemplo, se deve ou não expressar algumas de suas sequências. Contudo, evidentemente o DNA não é nada disso. Ele é um sistema de memória celular, na verdade, o mais fiel sistema de memória que surgiu na evolução da vida, em boa medida por ser uma molécula inerte.

Não passam mesmo de biologia mal aprendida a mística do DNA, o determinismo genético e outras ideias que dão ao DNA e aos genes um poder que ultrapassa o que está bem fundamentado no conhecimento biológico. Lewontin tinha razão vinte anos atrás. Cabe perguntar: a respeito de tais ideias, fizemos algum progresso nesse meio tempo? Minha impressão é que tivemos algum avanço, como mostra a popularidade da epigenética, inclusive no que se refere ao comportamento. Contudo, este é ainda um avanço tímido. É tempo de estas ideias serem eliminadas do ensino de biologia, em todos os níveis de escolaridade, assim como da popularização da ciência e dos escritos científicos. A morte da mística do DNA se torna cada vez mais necessária. Até mesmo para que venha à tona de modo mais claro a grande importância do DNA nos sistemas vivos.

Charbel N. El-Hani

Instituto de Biologia/UFBA

 

PARA SABER MAIS:

Bruggeman, F. J., Westerhoff, H. V. & Boogerd, F. C. 2002. Biocomplexity: A pluralist research strategy is necessary for a mechanistic explanation of the “live” state”. Philosophical Psychology 15: 411-440.

El-Hani, C. N. 2007. Between the cross and the sword: the crisis of the gene concept. Genetics and Molecular Biology 30(2): 297-307.

Gericke, N.; Hagberg, M.; Santos, V. C.; Joaquim, L. M. & El-Hani, C. N. 2014. Conceptual variation or Incoherence? Textbook discourse on genes in six countries. Science & Education 23: 381-416.

Keller, E. F. 2002. O Século do Gene. Belo Horizonte: Crisálida.

Leite, M. 2006. Retórica determinista no genoma humano. Scientiae Studia 4: 421-452.

Lewontin, R. J. 2002. A Tripla Hélice. São Paulo: Cia. das Letras.

Moss, L. 2003. What genes can’t do. Cambridge-MA: MIT Press.

Meyer, L. M. N.; Bomfim, G. C. & El-Hani, C. N. 2013. How to understand the gene in the 21st century. Science & Education 22(2):345-374.

Nelkin, D. & Lindee, M. S. 2004. The DNA mystique: the gene as a cultural icon (2a. ed.). Ann Arbor, MI: University of Michigan Press.

Nijhout, H. F. 1990. Metaphors and the role of genes in development. BioEssays 12: 441-446.

Parrott, R. L., Silk, K. J., Dillow, M. R., Krieger, J. L., Harris, T.M. & Condit, C. M. 2005. Development and validation of tools to assess genetic discrimination and genetically based racism. Journal of the National Medical Association 97:980-990.

A Genética Forense além (e apesar) do CSI

A Genética Humana Forense tem se popularizado nos últimos anos por meio se séries e programas de televisão, no entanto as informações passadas por esses programas raramente correspondem à realidade da ciência forenses atual.

Nas últimas décadas, diversos programas de entretenimento têm se dedicado a introduzir a Genética Humana Forense em nosso cotidiano, muitas vezes de maneira bastante simplista e pouco realista. No entanto, ainda que essa não seja a vitrine ideal para o que vem sendo realizado nessa área do conhecimento, a mesma existe e vem sendo usada pelo sistema de justiça de diversos países. Mas como isso funciona na prática, e qual a realidade da Genética Humana Forense atual?

Para responder esta pergunta, antes temos que entender um pouco sobre as evidências com as quais trabalham os geneticistas forenses. O DNA está presente em quase todas as células do corpo, e é único para cada um de nós, exceto os gêmeos monozigóticos. No nosso dia-a-dia perdemos muitas células, e com elas nosso DNA, sendo assim deixamos um vestígio nosso por onde passamos. Células são unidades microscópicas, e podem ser levadas de um lugar para o outro com vento, poeira ou água, o que faz com que nosso DNA possa estar em lugares onde nunca estivemos. Os cientistas forenses trabalham com esses ínfimos vestígios encontrados em cenas de crimes ou lugares de interesse forense.

Embora à primeira vista o trabalho forense possa parecer simples, é recente nossa capacidade técnica para: a. diferenciar um ser humano do outro em nível de DNA, pois somos 99.9% idênticos geneticamente. Foram necessários anos de desenvolvimento de perfis de identificação individual confiáveis, baseados no 0.01% da variabilidade que diferencia 7 bilhões de pessoas; e b. obter quantidade suficiente de DNA viável de tão escasso (e não raramente mal preservado) material biológico, pois as células que perdemos são poucas e ficam expostas ao ambiente, sofrendo degradação natural. Ainda assim, nem sempre é possível conseguir DNA viável para uso em análises forenses.

Desde que conseguimos tais avanços, o DNA obteve um status de intocável quando o assunto são evidências criminais, principalmente quando a discussão é realizada por leigos. No entanto, do ponto de vista científico, sabe-se das limitações das evidências de DNA.  Análises de DNA podem ser mal interpretadas ou enviesadas, pois dependem de manuseio ou interpretação humana em praticamente todas as etapas. Além disso, como mencionado anteriormente, DNA presente na cena do crime não é uma evidência inquestionável da presença do indivíduo na cena do crime, já que existem outras explicações plausíveis. Atualmente, na maioria dos países, o simples fato da presença de DNA na cena do crime não é evidência de culpabilidade. São necessárias mais evidências que suportem o caso para que um indivíduo seja considerado culpado.

Existe um outro lado da Genética Humana Forense que vem ganhando força nos últimos anos, que visa a construção de retratos moleculares dos suspeitos com bases na construção de perfis de genes relacionados a características fenotípicas como cor de olhos, cor de pele, cor de cabelos e formato do rosto. Um estudo de 2012 usou os genomas completos de pessoas públicas para avaliar com que precisão se podia prever os fenótipos de pigmentação de pele, olhos e cabelos nesses indivíduos. De acordo com os autores, somente era possível prever com certa precisão a presença de sardas (91%), enquanto a confiabilidade para cor de olhos foi de apenas 36%, e as demais variaram entre 42 e 83%. Esses valores são adequados para um estudo científico, mas nem de perto razoáveis para fins forenses. No entanto, em casos forenses, o que se faz é a soma de fenótipos, por exemplo, pelo DNA do suspeito poderíamos chegar a probabilidade de 75-85% do mesmo ser homem, de cabelos castanhos, sardas e olhos castanhos. Ou seja, é possível predizer um fenótipo, mas não excluir outros. Em relação a predição de fenótipos faciais, até o momento não existe nenhuma evidência científica do possível uso confiável da construção de retratos moleculares fidedignos a partir de genomas. O que se pode hoje é apenas construir um fenótipo aproximado usando dados populacionais, mas esse conhecimento não pode ser aplicado para a identificação individual.

Outras abordagens frequentes da Genética Humana Forense são o uso de linhagens familiares em suas investigações, como já foi discutido aqui no blog anteriormente; e a identificação de indivíduos por ancestralidade biogeográfica. A ideia principal desta última é diminuir o número de suspeitos usando marcadores genéticos de ancestralidade, pois assim seria possível saber se o suspeito seria europeu, africano, asiático ou nativo americano. Além de eticamente questionável, essa abordagem não poderia ser aplicável em países miscigenados, e estaria sujeita a um grande viés dependendo do grupo de marcadores genéticos usados. Recentemente a Inglaterra adotou essa abordagem no controle de imigração de sua fronteira, pois queria garantir que os refugiados que pediam asilo eram realmente do grupo biogeográfico que declaravam ser. Situações como essa surgem quando o uso da ferramenta técnica gerada pela ciência não é acompanhado pelo conhecimento científico proporcionado pela mesma.

Um relatório recente sobre a Ciência Forense nos EUA mostrou que o uso de técnicas forenses avançadas sem compromisso científico por parte dos investigadores que geram os laudos forenses é algo comum, e tem levado a sérias consequências no país, tais como execuções de inocentes e prisões injustas. Talvez esse mau uso dos dados, ou mesmo essa deturpação da informação gerada, seja resultado direto do status de infalível do DNA e de outros métodos forenses, somado à falta de educação científica dos envolvidos no sistema de justiça.

Tábita Hünemeier

IB/USP

PARA SABER MAIS:

Foto da abertura: https://www.discoverycf.com